For example,Бобцов

SIMULATION OF SENSING ELEMENT OF TEMPERATURE SENSOR BASED ON SILICATE GLASS WITH SODIUM NANOPARTICLES

Annotation

Computational simulation methods were used to show that silicate glasses with sodium nanoparticles, which possess plasmon resonance at 405 nm wavelength, can be used as sensing elements in temperature sensors. The modeling was performed in a dipole quasistatic approximation taking into account the dispersion of sodium optical constants in solid and liquid states, and also the temperature dependence of sodium material density in a liquid phase. It was shown that for the temperature less than 373 K the glasses with sodium nanoparticles can be used for creation of temperature sensors of emergency situations with the threshold switching during the transition of sodium from solid to liquid state. The temperature measurement at higher temperatures can be performed either on the spectral shift of the plasmon absorption band, or on the change of its amplitude. The calculations have shown that the temperature sensitivity of spectral position of the plasmon absorption band of sodium nanoparticles in glass is 0.017 nm/K for the temperature region equal to 373-973K; and the temperature sensitivity of the plasmon absorption band amplitude is 0.3 %/K.

Keywords

Articles in current issue