For example,Бобцов

ANALYSIS OF NOISE COMPONENTS IN QUARTZ PENDULUM ACCELEROMETER WITH DIGITAL FEEDBACK AMPLIFIER

Annotation

Subject of Research. The paper presents research of compensation-typequartz pendulum accelerometer with digital feedback amplifier. Noise components of the accelerometer output signal are studied. Method. Basedon a series of experimental data, the noise components and errors of the studied device are analyzed in accordance with the method adopted at a number of domestic industrial enterprises in compliance with the Russian standards, and also in accordance with the Allan variation method, which corresponds to the International standards. MainResults. We have performed the level estimation of noise components using the spectral density of noise power distribution method. The problem of discrete filter creation is solved for the output signal realized in a digital feedback amplifier based on an embedded microcontroller. The filter has been selected in accordance with two quality criteria. According to the first criterion, the root-mean-square error tends to a minimum. The second one is a complex quality criterion for which the studied device is viewed as a closed automatic control system, wherein the system bandwidth is expected to tend to the required value and the control time tends to a minimum. Mathematical simulation of operation of the accelerometer with a digital feedback amplifier and a filter is performed in the MATLAB environment in order to determine the parameters that correspond to the complex quality criterion. Practical Relevance. It is shown that the useof the second order Butterworth filter makes it possible to reduce the noise component of the accelerometer output signal by approximately 2.5 times and corresponds to both quality criteria outlined in the paper.

Keywords

Articles in current issue