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Abstract

The issue of effective detection and classification of various traffic signs is studied. The two-stage method is proposed
for creation of holistic model with end-to-end solution. The first stage includes implementation of effective localization
of traffic signs by YOLO version 3 algorithm (You Only Look Once). At the first stage the traffic signs are grouped
into four categories according to their shapes. At the second stage, an accurate classification of the located traffic signs
is performed into one of the forty-three predefined categories. The second stage is based on another model with one
convolutional neural layer. The model for detection of traffic signs was trained on German Traffic Sign Detection
Benchmark (GTSDB) with 630 and 111 RGB images for training and validation, respectively. Classification model was
trained on German Traffic Sign Recognition Benchmark (GTSRB) with 66000 RGB images on pure ‘“numpy” library
with 19 x 19 dimension of convolutional layer filters and reached 0.868 accuracy on testing dataset. The experimental
results illustrated that the training of the first model deep network with only four categories for location of traffic signs
produced high mAP (mean Average Precision) accuracy reaching 97.22 %. Additional convolutional layer of the second
model applied for final classification creates efficient entire system. Experiments on processing video files demonstrated
frames per second (FMS) between thirty-six and sixty-one that makes the system feasible for real time applications.
The frames per second depended on the number of traffic signs to be detected and classified in every single frame in
the range from six to one.
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AHHOTALUA

HUccnenoBan 3¢ eKTHBHBIA METOI OOHAPYKCHUS U KJIACCH(DUKAIMH Pa3IMIHBIX KaTETOPUN JOPOXKHBIX 3HAKOB. J{J1st
MOCTPOCHUS IIEIOCTHOM MOJIETH C KOMIUICKCHBIM PEIICHUEM ObLT MPETIOKEH METOJI C AByMsI dTariamu. Ha nepBoM 3tare
METO/T BKJIFOUAET BBIMTOJTHEHHE 3(D()EKTHBHOI JIOKATU3aIMU JOPOKHBIX 3HAKOB Ha 0cHOBe anroputma Y OLO Bepcuu 3
(You Only Look Once). []yist mepBoro 3rara J0poxHbIE 3HAKH TPYIITHPYIOTCS B YEThIPE KaTETOPUH B COOTBETCTBHH C HX
¢dopmoit. Ha BropoM dTare BBINOIHASTCS TOYHAs! KiacCU(puKaius 00HAPYKEHHBIX JOPOKHBIX 3HAKOB B COOTBETCTBUE C
OJIHOM M3 3apaHee onpeeneHHbIX 43 kareropuid. Bropoif aTam nocTpoeH Ha MOAENHN ¢ OTHUM CBEPTOYHBIM HEHPOHHBIM
cioeM. Mozenb oOHapykeHHs JOpOoXKHBIX 3HaKoB oOydaeTcst Ha GTSDB (German Traffic Sign Detection Benchmark)
¢ 630 u 111 RGB-u3o00paxxeHuAME [Tt O0yUCHHUS M BAIUIAIIH COOTBETCTBEHHO. MoIeTb KIacCUPHUKAIIH 00ydaeTcs
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Ha GTSRB (German Traffic Sign Recognition Benchmark) ¢ 66000 RGB-u300paxeHnsiMu, ¢ HOMOLIbI0 OHOINOTEKN
«numpy», GUIbTpaMu CBEPTOYHOrO Closi pasMepHocThio 19 X 19, u nocturia tounoctu 0,868 Ha Habope MaHHBIX
JUISL TECTUPOBaHUS. Pe3ysIbTaTbl HSKCIIEPIMEHTOB MTOKa3aJId, 4TO 00y4eHHe rTy0OoKoil HepOHHOI ceTn mepBoi Moaen
TONBKO C 4 KaTeropusMH ATl ONPEeNIeHNsT KOOPIANHAT JOPOKHBIX 3HAKOB BBIAET BHICOKYIO TOUHOCTh MAP (mean
Average Precision), nocturaromryro 97,22 %. JlonomHUTEIbHBIN CBEPTOYHBIN CI0H BTOPOH MOAETH, T0OaBICHHBIN I
OKOHYATEeIIbHON KIIacCU(pUKANNH, co31aeT 3(h(PEKTUBHYIO IETOCTHYIO CHCTEMY. DKCIIEpUMEHTHI TI0 00paboTKe BHUIEO-
¢aitnos nokazaimu FPS (frames per second) B ananasone 36 u 61, 4To fenmaeT cHCTeMy IIPUTOAHOM ISl HCIIOIB30BaHUS
B peasbHOM BpeMeHH. FPS 3aBucen oT koim4ecTBa JOPOXKHBIX 3HAKOB, KOTOPBIE IOJDKHBI OBITH JIOKAIN30BaHbI M KJIac-

CU(UIIUPOBAHBI B KAXKJIOM OTIICJILHOM KaJIpe, U HAXOAWIKCh B JUana3oHe ot 6 jo 1.

KiioueBrnle c10Ba

JeTeKTUPOBaHUE JJOPOKHBIX 3HAKOB, NTyOOKas cBepTouHas HeifpoHHas ceth, YOLO v3, xiaccupukanust 10poxKHbIX

3HAKOB, TOYHOCTb AC€TEKTUPOBAHUA

Introduction

One of the important feature of the modern cars and
future fully autonomous vehicles is their vision that makes
them capable to sense the environment, assist the driver
and take control in dangerous situations. Efficient and
accurate traffic signs detection is still a challenging issue
due to a number of real life factors that influence image
quality, including various natural backgrounds, lightning
and blurriness.

Traffic signs recognition challenges were addressed
by researchers implementing deep convolutional neural
networks [1-4], region-based convolution neural networks
[S, 6], histogram of oriented gradients feature with support
vector machine [7-9]. However, most of the algorithms
were developed for detection of a small number of
categories. Certain algorithms are focused only on
classification problem, leaving predicting issue of traffic
signs location on the image without attention. Multiple
categories of traffic signs to be detected and classified
remains an open issue.

This research presents YOLO (You Only Look Once)
algorithm of version 3 [10-12] aimed at architecture of
deep CNN (Convolutional Neural Network) creation for
traffic sign recognition. Recently, deep CNNs were not
considered for real time applications due to highly complex
mathematical computations. However, modern GPUs
(graphics processing units) were especially developed to
implement high performance.

The proposed method incorporates two stages for
accurate localization of traffic signs on images and for

further classification of the cut fragments. The objective is
to develop a system that can effectively detect and classify
traffic signs with performance that makes it able to be
applied in real time applications.

To train developed architecture based on YOLO
version 3 model, GTSDB (German Traffic Sign Detection
Benchmark) [13] and GTSRB (German Traffic Sign
Recognition Benchmark) [14] datasets were used. The first
dataset was applied to train localization stage that predicts
coordinates of traffic sings and returns them as output.
Classification stage was trained on the second dataset and
takes an output from the first stage as an input.

Architecture of proposed method

The proposed method consists of two stacked together
models. The first model (model-1) is trained to locate
traffic signs separated into 4 categories [12]. The second
model (model-2) is trained to classify located fragments
of the image into one of the 43 classes [15]. Therefore,
model-1 and model-2 solve detection and classification
issues accordingly. Architecture of the system is shown
in Fig. 1.

After traffic sign is detected by model-1, cut fragment
is fed to the model-2. Before feeding cut fragment to
the model-2 it was resized to the resolution 32 x 32 and
preprocessed in the same way as it was done for training
(normalization and subtraction of mean image). The result
is a class of traffic signs (one of 43 classes) that is returned
to the model-1 and used as a label for the appropriate
bounding box to be drawn on the input image.

Localization Classification
Bounding
Boxes
Coordinates
&
Labels
Fig. 1. General flowchart of the entire system
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Table 1. Types of traffic signs separated into categories

Prohibitory Danger Mandatory Other
speed limit; priority at the next go right; restriction ends; priority road;
no overtaking; intersection; go left; give way;
no traffic both ways; danger; go straight; stop;
no trucks bend; go right or straight; go left or no entry
uneven road; straight;
slippery road; keep right;
road narrows; keep left;
road crossing; roundabout

construction;
traffic signal;
SNOW;
animals

Traffic signs for the model-1 are grouped into the
following categories: prohibitory, danger, mandatory and
other as shown in Table 1.

The first category, prohibitory, consists of circular
traffic signs that have white background and red border
line. The second category, danger, consists of triangular
traffic signs that have white background and red border
line. The third category, mandatory, consists of circular
traffic signs that have blue background. The last category,
other, consists of traffic signs that do not belong to previous
categories.

Model-1 was trained on GTSDB that has 900 RGB
images. The dataset includes images with no traffic signs
to be used for training. However, it was decided to exclude
such images. Resulted dataset was divided into sub-datasets
for training and validation in proportion 85 % and 15 %,
respectively. The total amount of images for training and
validation is 630 and 111. The number of excluded images
without traffic signs is 159.

Annotations of bounding boxes in GTSDB are in a
single txt file for all images. Originally, coordinates of
bounding boxes are defined as top left corner and bottom
right corner. Consequently, coordinates were converted
into YOLO format as following: centre of bounding box
in x, centre of bounding box in y, object width and object
height. Calculated coordinates were normalized by real
image width and real image height in order to be in the
range between 0 and 1. Calculations were made by the
following equations:

centerX = —(Xmax o) i 5
2 w
_ (Ymax + Ymin) 1
centerY = ——— - —,
2 h
width = (Xmax - Xmin) B
w

1
heidth = (Ymax - Ymin) ’ ; >

where X i, Yinins Xmax a0d Y.« are original coordinates;
w and 4 are real image width and real image height
respectively.

After conversion, annotations were written into text

files next to every image with the same names as image

files have. As a result, every image has an annotation file
where class number and bounding boxes coordinates are
recorded. Every single line describes one bounding box.
Images themselves were converted from PPM (Portable
PixMap) to JPG (Joint Photographic Experts Group)
format in order to make possible training of the model-1 in
Darknet framework.

The CNN architecture of the model-2 is described
in the paper [15]. It has one convolutional layer with 32
filters, ReLU (Rectified Linear Unit) activation function,
one downsampling layer with 2 x 2 maximum factor, and
hidden affine layer with 500 neurons that is followed by the
output layer with 43 neurons as number of classes.

Model-2 was trained on GTSRB with 66000 as total
amount of RGB images. The dataset was divided into sub-
datasets for training, validation and testing as following:
50000, 12000 and 4000 images, respectively. Before
training sub-datasets were normalized by dividing pixels
values on 255 and further preprocessed by subtracting mean
image that was calculated from images for training.

The dimension of convolutional layer filters for model-2
was chosen equal to 19 x 19 as it has the highest training
accuracy [15].

Model-1 uses mAP (mean Average Precision) metric to
evaluate accuracy every 1000 iterations during training. To
calculate mAP for the entire model-1, firstly, the average
precision (AP) is calculated for every class among 4:
prohibitory, danger, mandatory and others. Then, the mean
of these calculated APs across all classes produces mAP.

AP, in turn, is calculated by considering an area under
interpolated Precision (axis y) and Recall (axis x) curve
[16, 17]. The curve represents performance of the trained
model-1 by plotting a zig-zag graph of Precisions values
against Recalls values. Firstly, 11 points are located on
Recall curve as following: (0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6;
0.7; 0.8; 0.9; 1). Then, the average of maximum Precision
values is computed for these 11 Recall points.

Precision illustrates how accurate predicted bounding
boxes are and demonstrates an ability of the model-1
to detect relevant objects. Recall illustrates all correct
predictions of bounding boxes among all relevant ground
truth bounding boxes and demonstrates an ability of the
model-1 to detect all ground truth bounding boxes.

To plot zig-zag graph, detected bounding boxes are
collected and organized in descending order according to
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their confidences. Next, Precision and Recall are calculated
for every detected bounding box by the following
equations:

TP P
Precision = = S
TP+ FP  alldetections
P TP
Recall =

TP + FN - allgroundtruth ’

where TP (True Positive) represents the number of
bounding boxes with correct predictions; FP (False
Positive) represents the number of bounding boxes with
wrong predictions; FN (False Negative) represents the
number of ground truth bounding boxes that were not
detected.

To identify that prediction is correct or wrong (True or
False) IoU (Intersection Over Union) is used. If IoU is more
or equal than a threshold, then predicted bounding box
is considered as TP. If IoU is in the range (0; threshold),
then predicted bounding box is considered as FP. For this
study, the threshold is set to 50 %, indicating that predicted
bounding box is correct (TP) if IoU is equal to or is more
than 0.5. Consequently, mAP for the entire model-1 can be
reported as following: mAP@0.5.

Experimental results

Model-1 used Darknet framework to be trained in.
Parameters used for the training are described in Table 2.
As can be seen from Table 2, the network size (input) has
dimension 608 x 608. Before feeding to the network, the
input images were resized to this spatial dimension by the
framework without keeping aspect ratio. The 608 x 608
dimension was chosen as the next level up of standard,
default 416 x 416 dimension [10-12] and was aimed to
increase the accuracy of detecting.

Images were also collected in the batches with 64
items each. Sixteen was set as a number of subdivisions.
Batch parameter represents the number of images that
were processed during one iteration. Subdivision parameter
represents the number of mini batches in one batch that
GPU has processed at once. Weights were updated after
each such iteration.

To predict bounding boxes, anchors (priors) were used
at each scale. The anchors were calculated by k-means
clustering for COCO dataset. The width and height of
anchors is used to calculate predicted bounding boxes
spatial dimensions. The total number of predicted bounding
boxes is 10647 (507 for scale 1, 2028 for scale 2 and 8112
for scale 3) that were further filtered with non-maximum
suppression technique.

The chosen framework also gave the possibility
to augment data on fly during training. The last three
parameters in Table 2 randomly changed saturation,
exposure and hue during training.

Fig. 2 shows loss and mAP during training with 8000
as total number of iterations.

Table 3 shows mAP results calculated on validation
images every 1000 iterations. It also shows the highest
found mAP during training on the particular iteration point
that is 5700. The 111 images for validation have unique

number of ground truth bounding boxes that is 176. To
calculate mAP, IoU threshold and confidence threshold
were set to 0.5 and 0.25, respectively.

As can be seen from Table 3, the total number of
detections at 5700 iterations is 271. After filtering by
thresholds (IoU and confidence), the total number of
bounding boxes at this iteration point for all four classes is
as following: TP =167, FP =7, FN = 9. It means, that there
are 3 and 4 bounding boxes with wrong predictions (FP) for
the classes, mandatory and other, respectively. Nine ground
truth bounding boxes among 176 were not detected (FN).

Model-2 was trained on pure “numpy” library during
9000 iterations and reached 0.868 accuracy on testing
dataset, 0.867 accuracy on validation dataset and 0.963
accuracy on training dataset for the 19x19 dimension of
convolutional layer filters [15].

Test experiments for entire system were performed by
GPU Tesla V100 with 16 Gb of RAM (Random Access
Memory). Fig. 3 shows testing results.

Average FPS results on processing video files were in
the range between 36 and 61 and depended on the number
of traffic signs in every frame of the video that, in turn, was
in the range from 6 to 1 respectively.

In order to utilize the trained model for inference in
real time, the following embeddable GPUs can be applied
instead of Tesla V100: Jetson Nano, Jetson TX2, Jetson
Xavier NX, Jetson AGX Xavier. These platforms have
RAM in the range of 4-32 Gb and can process minimum
4 and maximum 36 video streams in parallel. The
specifications make it possible to apply them in real time
for the proposed method after training.

Conclusion

The study presents the recognition problem for a variety
of traffic sign classes. Due to a number of categories
and small amount of images in the dataset for training,
it was proposed to separate processes of detection and
classification into different models. As for detection,
deep convolutional YOLO version 3 model was trained
on GTSDB to predict locations of traffic signs among

Table 2. Parameters for the model-1 to be trained with

Parameter Value
network size (input width, height) 608 x 608
batch 64
subdivisions 16
learning rate 0.001
learning rate decay 0.0005
anchors, scale 1 (large object) (116, 90), (156, 198),

(373, 326)

anchors, scale 2 (medium objects) | (30, 61), (62, 45), (59, 119)

anchors, scale 3 (small objects) (10, 13), (16, 30), (33, 23)

saturation 1.5
exposure 1.5
hue 0.1
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Fig. 2. Loss and mAP graph during training of model-1

4 categories. Further, one-layer convolutional model,
trained on GTSRB, was stacked to utilize final classification
among one of the 43 classes.

Experiments showed that training of deep network
with only 4 categories to detect traffic signs gives high
mAP@0.5 accuracy reaching 97.22 % and that is more
than in other approaches with considerable number of
categories. One more convolutional layer stacked in order
to implement classification, creates efficient and fast system

The proposed method can be compared with other
implementations by CNNs. In [1], the authors used
6 categories of Swedish traffic signs dataset (STSD)
reaching the average Precision accuracy equal to 97.69 %
and the average 92.9 % Recall accuracy. In [2], the
authors used 10 categories of STSD reaching mAP@0.5
accuracy equal to 95.2 %. The authors in [2] also used
DFG dataset (Slovenian company DFG Consulting d.o0.0.)
with 200 categories reaching mAP@0.5 accuracy equal to

that can be used in real time applications.

95.5%.

Table 3. mAP results during training

) ) Average precision
Iterations Detections mAp
Prohibitory Danger Mandatory Other

1000 5472 57.46 % 76.32 % 41.80 % 63.17 % 59.69 %
(TP=59,FP=29) | (TP=16,FP=4) | (TP=12,FP=9) | (TP=25FP=9)

2000 804 95.89 % 84.47 % 82.65 % 84.37 % 86.85 %
(TP=76,FP=4) | (TP=20,FP=8) | (TP=21,FP=8) | (TP=37,FP=2)

3000 1551 86.47 % 99.67 % 89.90 % 87.91 % 90.99 %
(TP=74,FP=20) | (TP=24,FP=6) | (TP=25FP=31) | (TP=39, FP=21)

4000 336 95.89 % 99.28 % 78.71 % 92.66 % 91.64 %
(TP=76,FP=2) | (TP=23,FP=0) | (TP=20,FP=2) | (TP =40, FP=4)

5000 431 97.00 % 100.00 % 95.88 % 93.43 % 96.58 %
(TP=76,FP=7) | (TP=24,FP=0) | (TP=24,FP=1) | (TP=41,FP=3)

5700 271 96.25 % 100.00 % 98.19 % 94.44 % 97.22 %
(TP=78,FP=0) | (TP=24,FP=0) | (TP=25FP=3) | (TP=40, FP=4)

6000 317 96.25 % 99.83 % 86.79 % 97.09 % 94.99 %
(TP=78,FP=1) | (TP=24,FP=1) | (TP=22,FP=4) | (TP=43,FP=6)

7000 222 96.25 % 100.00 % 92.20 % 96.95 % 96.35 %
(TP=78,FP=0) | (TP=24,FP=0) | (TP=23,FP=0) | (TP=42, FP=4)

8000 271 96.25 % 100.00 % 92.32 % 96.93 % 96.37 %
(TP=78,FP=1) | (TP=24,FP=0) | (TP=24,FP=1) | (TP=42,FP=2)
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Speed limit 60: 0.9337
———

Future research is aimed to improve the current model

by integrating unsupervised networks. Deep autoencoders
are unsupervised neural networks that are trained to
differentiate input. This feature of autoencoders is planned
to be used in order to detect only traffic signs leaving any
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