ниверситет итмо

НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ сентябрь-октябрь 2020 Том 20 № 5 ISSN 2226-1494 http://ntv.ifmo.ru/ SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS September-October 2020 Vol. 20 No 5 ISSN 2226-1494 http://ntv.ifmo.ru/en/

УДК 53

doi: 10.17586/2226-1494-2020-20-5-642-648

ПРОЕКТИРОВАНИЕ ОПТИЧЕСКОГО МОДУЛЯ ОЧКОВ ДОПОЛНЕННОЙ РЕАЛЬНОСТИ

А.А. Иванюк

МГТУ им. Н.Э. Баумана, Москва, 105005, Российская Федерация Адрес для переписки: ivanyukaa@student.bmstu.ru

Информация о статье

Поступила в редакцию 06.08.20, принята к печати 05.09.20 Язык статьи — русский

Ссылка для цитирования: Иванюк А.А. Проектирование оптического модуля очков дополненной реальности // Научно-технический вестник информационных технологий, механики и оптики. 2020. Т. 20. № 5. С. 642–648. doi: 10.17586/2226-1494-2020-20-5-642-648

Аннотация

Предмет исследования. Рассмотрен метод проектирования оптического модуля очков дополненной реальности, который содержит полупрозрачный светоделительный элемент, позволяющий наблюдать реальные предметы с наложенным дополнительным виртуальным изображением (OST HMD — optical see-through head-mounted display). Центральным элементом оптического модуля является призма, позволяющая видеть одновременно два канала: картину реального мира и наложенное на нее виртуальное изображение. В результате создается изображение дополненной реальности. Рассмотрена функциональная схема оптического модуля с введенной системой слежения за взглядом. Метод. Выполнена оптимизация поверхностей призмы, а также их наклонов и взаимного расположения при помощи Zemax OpticStudio. В основе оптимизации лежит идея использования поверхностей свободной формы, позволяющая уменьшить габариты, увеличить поле зрения и повысить качество изображения. Основные результаты. Приведены начальные параметры оптического элемента, а также алгоритм оптимизации поверхностей свободной формы, позволяющие получить сравнительно широкое поле зрения (54° по диагонали), компактность и высокие параметры качества изображения. **Практическая значимость.** Результаты работы могут найти применение при проектировании и разработке очков дополненной реальности в различных областях, например: медицине, дистанционном образовании, оборонной промышленности, спорте, маркетинге.

Ключевые слова

очки дополненной реальности, виртуальная реальность, поверхности свободной формы

doi: 10.17586/2226-1494-2020-20-5-642-648

OPTICAL MODULE DESIGN FOR AUGMENTED REALITY GLASSES

A.A. Ivaniuk

Bauman Moscow State Technical University, Moscow, 105005, Russian Federation Corresponding author: ivanyukaa@student.bmstu.ru

Article info

Received 06.08.20, accepted 05.09.20 Article in Russian

For citation: Ivaniuk A.A. Optical module design for augmented reality glasses. *Scientific and Technical Journal of Information Technologies, Mechanics and Optics*, 2020, vol. 20, no. 5, pp. 642–648 (in Russian). doi: 10.17586/2226-1494-2020-20-5-642-648

Abstract

Subject of Research. The paper considers an optical module design method for augmented reality glasses. The module contains a translucent beam-splitting element that provides observation of real objects with superimposed additional virtual image (OST HMD — optical see-through head-mounted display). The central element of the optical module is a prism that views two channels simultaneously: a real world picture and a virtual image. As a result, the user is able to see an augmented reality image. The functional scheme of the optical module with the introduced eye tracking system is considered. **Method.** Optimization of the prism surfaces, as well as tilts and relative positions, was performed using Zemax OpticStudio. It is based on the idea of applying free-form surfaces, which enables the sizes to be reduced, the field of view to be increased and the image quality to be improved. **Main Results.** The initial parameters of the optical element and an algorithm for optimization of free-form surfaces are developed, that gives the possibility to obtain a relatively wide field of vision (54° diagonally), compactness and high image quality parameters. **Practical Relevance.**

The results of this work can be used in the design and development of augmented reality glasses in various fields, such as: medicine, online education, defense industry, sports, and marketing.

Keywords

augmented reality glasses, virtual reality, augmented reality, free form surfaces

Введение

В последнее время особую популярность получают очки дополненной (augmented reality, AR) и виртуальной реальности, которые нашли применение в различных областях, таких как медицина (отображение вспомогательной информации, например, во время операции, когда использование рук невозможно); социальные сети (возможность видеть новости пользователей в режиме реального времени глазами авторов новостей); бизнес (обучение сотрудников и повышение их эффективности, а также контроль выполнения должностных обязательств); образование (виртуальные уроки для повышения эффективности дистанционного обучения); спорт (например, отображение скорости и пульса велосипедиста при использовании очков, или тренировки с сопровождением виртуального тренера) [1].

В соответствии с исследованием Tractica [2] популярность очков дополненной и виртуальной реальности вначале росла медленно, из-за того, что мировой рынок и качество самих устройств не были адаптированы к массовому использованию. Tractica прогнозирует, что мировой рынок умных AR-очков вырастет со 101 000 единиц в 2018 г. до 19,7 млн единиц ежегодно к 2025 г., что представляет собой совокупный годовой темп роста в размере 112,4 %. Эти объемы приведут к росту выручки устройств от 143 млн долларов США в 2018 г. до 20,9 млрд долларов США к 2025 г. в среднем на 103,8 %. Более того, мировые технологические гиганты (Google, Microsoft, Apple, Epson, Сбербанк и др.) уже занимаются разработкой очков дополненной и виртуальной реальности. А многие эксперты прогнозируют, что очки в будущем могут полностью заменить использование компьютеров и смартфонов.

Устройство оптического модуля

HMD (head-mounted display) — дословно переводится как дисплей, закрепленный на голове. Это устройство, используемое в системах дополненной и виртуальной реальности (иногда переводится как «шлем виртуальной реальности»), одеваемое непосредственно на голову в виде шлема или части его, которое имеет дисплей и оптику перед одним (монокулярная система) или двумя глазами (бинокулярная система).

OST HMD (optical see-through head-mounted display) — устройство HMD, с возможностью видеть не только виртуальную картину, но и одновременно наблюдать картину реального мира сквозь оптическую систему (рис. 1). Преимуществами AR-очков по технологии OST HMD с возможностью видения сквозь оптическую систему и использованием свободной формы, являются: компактность; невысокие значения фокусного расстояния; широкое поле зрения; улучшенные яркость и контраст передаваемого изображения; снижение аберраций. Центральным элементом модуля является призма, одна из поверхностей которой — светоделительная, позволяющая наблюдать реальные предметы с наложенным дополнительным виртуальным изображением (рис. 2). Таким образом, будут оптимизированы два оптических канала: путь проекционного изображения микродисплея и путь прозрачного изображения.

Оптический модуль (рис. 2) состоит из призмы свободной формы, корректора свободной формы, микродисплея, системы отслеживания взгляда Eye tracking (состоит из инфракрасной (ИК) камеры и ИК светодиодов), микроконтроллера.

Выбор начальных параметров

Успешная оптимизация во многом зависит от правильно выбранных ограничений систем.

$$\begin{cases} Y_{Pa'} - Y_{Pa} < 0, \\ Y_{Pa''} - Y_{Pa} > 0, \\ 0.5 < Z_{Pa'} - Z_{Pa} < 2, \end{cases}$$
(1)

$$\begin{cases} Y_{Pb'} - Y_{Pb} > 0, \\ -1.5 < Z_{Pb'} - Z_{Pb} < -0.2, \end{cases}$$
(2)

$$Y - 2 < Y_{Pc} - Y_{Pc'} < -0, 2,$$

 $0 < Z_{Pc} - Z_{Dc'} < 1,$
(3)

Рис. 1. Принцип работы оптического модуля очков дополненной реальности

Рис. 2. Функциональная схема оптического модуля

$$\begin{cases}
Z_{Pa} > \text{расстояние видения глаза (17 мм),} \\
Z_{Pc} > \text{расстояние видения глаза (17 мм),}
\end{cases}$$
(4)

где Pa, Pa', Pa'' — координаты прохождения или отражения луча R_{2b} от поверхностей S1, S2, S3, S1' соответственно (рис. 3, δ); $Y_{Pa''}$, $Y_{Pa'}$, Y_{Pa} , $Z_{Pa'}$, Z_{Pa} — соответствующие координаты по осям Y и Z; Pb — координата отражения луча R_{1u} от поверхности S2; Pb' — координата прохождения луча R_{2b} через поверхность S3; $Z_{Pa'}$, Z_{Pb} , $Y_{Pa'}$, Y_{Pb} — соответствующие координаты по осям Z и Y; Pc, Pc' — координаты прохождения или отражения луча через поверхности S1', S3 соответственно; $Z_{Pc'}$, Z_{Pc} , $Y_{Pc'}$, Y_{Pc} — соответствующие координаты по осям Z и Y.

Без выбора систем (1)–(4) велика вероятность, что будут получены три поверхности в пространстве, никак не связанные между собой, поэтому особое внимание необходимо уделить ограничениям и условиям оптимизации для контроля полученной системы. В соответствии с [3, 4] все координаты соотносятся с глобальной координатной системой с центром в зрачке глаза. Для наглядности приведено изображение хода лучей от локальных зон поверхности (рис. 3, δ).

Ограничения по Y-направлению с помощью Pa'', Pa', Pa утверждают, что поверхности 1 и 2 не пересекутся, и нижний краевой луч пройдет без помех. И также, последнее выражение в формуле (1) накладывает ограничения на толщину границ призмы (от 0,5 до 2 мм). С помощью параметров по Y- и Z-направлениям (Pb', Pb) (2) гарантированно, что:

- 1. верхний краевой луч пройдет после преломления на поверхности *S*1';
- выражение (2) позволяет контролировать толщину призмы;
- с помощью выражения (3) поверхности 1 и 3 расположены правильно относительно друг друга, и лучи будут проходить без помех и в соответствии с требованиями в (3);

а

*S*3

<u>S1'</u>

8,4

S1

10,4

*S*2

Микродисплей

19,7

Глаз

18,2

 при помощи выражений (1) и (3) три поверхности призмы располагаются верно друг относительно друга.

Эти ограничения [5] также в дальнейшем регламентирует поворот и децентрировку поверхностей 1 и 2, что помогает снизить аберрации на этих поверхностях. С использованием выражения (4) устанавливается минимальное значение наилучшего видения, а также факт, что наклон поверхности 1 призмы будет в противоположную сторону.

$$z = c \frac{x^2 + y^2}{\left(1 + \sqrt{\left(1 - (1 + k)c^2(x^2 + y^2)\right)}\right)} + \sum C_j x^m y^n, \quad (5)$$
$$j = \frac{\left[(m + n)2 + m + 3n\right]}{2} + 1,$$

где z — прогиб поверхности вдоль оси Z; x и y — координаты в локальной системе координат; m и n — степени для y, x координат; c — кривизна поверхности в области вершины; k — коническая константа; C_j — коэффициент для $x_m y_n$ с порядковым номером j.

В ходе оптимизации [3] в программе Zemax стандартные поверхности сначала оптимизируются до асферических поверхностей с типом Even asphere и добавлением коэффициентов до 10-го порядка [6, 7]. Далее тип этих поверхностей меняется на Extended Polynomial (расширенный полином) (5).

$$\theta_c = \arcsin\left(\frac{n_r}{n_i}\right),\tag{6}$$

где n_r — показатель преломления материала, в котором будет происходить преломление; n_i — показатель преломления падающей среды. В этом случае условие полного внутреннего отражения выполняется, когда лучи, проходящие в пределах призмы, ударяются о поверхность S1' под углом, большим $\theta_c = 42,09^\circ$. Материал призмы РММА (полиметилметакрилат), n = 1,492.

Рис. 3. Начальная схема призмы оптического модуля (*a*); оптический ход лучей от разных зон поверхности и положений зрачка, в зависимости от их поля и положения зрачка и контролируемого условия для создания полного внутреннего отражения (*б*).

 R_{2u}, R_{2b} — случайные лучи для разных поля зрения и положения входного зрачка; $\theta_{1b1}, \theta_{2u1}$ и $\theta_{1b1'}$ — случайные углы падения лучей R_{2u}, R_{2b} на поверхностях S1, S1', P1, P2 — точки фокусировки лучей R_{2u}, R_{2b}

Поверхность	Х, мм	Ү, мм	<i>Z</i> , мм	Децентрировка по оси У, мм	Поворот по оси Х, град					
<i>S</i> 1	_	0,305	18,25	4,55	-1,8					
<i>S</i> 2		15,534	26,25	1,50	23					
<i>S</i> 1′	Параметры совпадают с S1, так как это одна просветленная поверхность, которую для последовательного проектирования в Zemax необходимо вводить, как разные									
<i>S</i> 3		17,101	33,55	21,50	-70					
Микродисплей		_	39,55	22,00	-60					

Таблица 1. Начальные параметры призмы

Чтобы учесть факт полного внутреннего отражения [8], рассчитывается критический угол прохождения луча. Угол прохождения луча через поверхности результат наклона, децентрировки и положения плоскостей друг относительно друга. Лучи, испускаемые микродисплеем, отражаются от S1' посредством полного внутреннего отражения. Это явление происходит, когда свет, перемещающийся внутри материала с более высоким индексом, ударяется о поверхностную границу среды с более низким индексом под углом, большим его критического угла (6).

Учитывая ограничения (1)–(6) и требования к компактности, выведены начальные (базовые) параметры призмы, которые приведены в табл. 1, схема призмы на начальном этапе приведена на рис. 3, *а*.

Целью настоящей работы является определение компактности, легкого веса, и широкого поля зрения AR-очков. Основываясь на таких параметрах, как размер, разрешение, доступность и цена, — выбран дисплей Emagin OLED с разрешением 2040 × 2040 (2K) пикселей и размером пикселя 9,3 мкм. В результате необходимо получить поле зрения 54° по диагонали, с фокусным расстоянием не более 17 мм. Минимальное фокусное расстояние 10 мм.

Оптимизация в Zemax OpticStudio

На начальном этапе оптимизации вводятся рассчитанные параметры из табл. 1 и основные характеристики. Размер входного зрачка определяется как 5 мм (выбирается среднее значение, так как зрачок человеческого глаза составляет 2–8 мм).

Система моделируется «в обратном ходе» для установки, работающей в реальности. В реальности (в фи-

зической системе) предметом является микродисплей, а плоскостью изображения — сетчатка человеческого глаза (выходные/входные зрачки системы и человеческого глаза будут совмещены). Для эффективной оптимизации система определяется таким образом, что выходной зрачок физической системы — это входной зрачок, смоделированный в OpticStudio, а микродисплей рассмотрен как «плоскость изображения» системы. Далее описан процесс моделирования лучей в OpticStudio.

Оптическая система в значительной степени зависит [4, 9] от наклонов и децентрировки (табл. 1) нескольких поверхностей, для регулировки наклона и децентрировки поверхностей которых используются координатные разрывы и тип поверхности Coordinate Break. Все поверхности приведены на рис. 4, *a*, при этом поверхность 1 — диафрагма (STOP). Например, координатными разрывами для поверхности 3 (S1) являются поверхности 2 и 4, а для поверхности 6 (S2) поверхности 5 и 7.

На рис. 4, *а* координатные разрывы выделены красным цветом. Свойства поверхности *S*1 копируются в свойства поверхности *S*1' с помощью функции Pickup.

Для настройки работы системы в двух режимах одновременно используется редактор мультиконфигураций (рис. 4, δ). Конфигурация 1 создана поверхностями 0–13, а также плоскостью изображения (поверхности 17 и 18). Конфигурация 2 состоит из поверхностей S1 и S2, но больше не использует поверхности S1' или S3. Эти поверхности (и соответствующие им разрывы координат) в редакторе не учтены. Конфигурация 2 настроена так, чтобы учитывать только поверхности 0–7, 14–16 и 18; координатный разрыв для поверхности изображения отсутствует, поскольку необходимо, чтобы

Рис. 4. Конструктивные параметры оптической системы (a) и редактор мультиконфигураций (б)

Рис. 5. Оптимизация на начальном этапе (*a*); оптическая система после введения полей 11° (зеленый цвет), 15° (красный), 20° (желтый цвет) и оптимизации (*б*)

плоскость изображения была перпендикулярна оси *Z*, как бы моделируя свет из окружающей среды.

До оптимизации введены конструктивные параметры [9, 10] и соответствующие координатные разрывы. После чего поверхности S1 и S2 подверглись оптимизации до типа Even asphere (рис. 5, *a*). На втором этапе оптимизации, когда аберрации и качество системы стали удовлетворительными, было увеличено поле зрения (рис. 5, δ), и снова проведена оптимизация. На каждом этапе добавляются соответствующие операнды оценочной функции, которые представлены в табл. 2. На третьем этапе оптимизации поле зрения увеличено до 54° по диагонали, проведена оптимизация, и настроены режимы мультиконфигурации.

Полученные результаты

В результате рассчитанных ограничений систем (1)– (6) и начальных параметров призмы рис. 3, *a*, а также оптимизации в OpticStudio, результат которой приведен на рис. 6, были получены параметры главного оптического элемента модуля AR-очков. Конструктивные параметры оптической системы, полученные в результате оптимизации, приведены на рис. 4, *a*. Вид оптической системы с обозначениями после оптимизации и отображенными двумя каналами оптического хода, приведен на рис. 6.

На рис. 7, *а* представлена 3D-модель оптического модуля. Рис. 7, *б* иллюстрирует виртуальное изобра-

Рис. 6. Вид оптической системы в режиме мультиконфигурации после оптимизации и с полем зрения 54° по диагонали

Название операнда	Функция операнда
GLCZ/GLCY/GLC	Глобальные координатные ограничения: следует выровнять поверхность <i>S</i> 1' к <i>S</i> 1 (поверхностей 9 и 3), так как физически это одна поверхность;
DIFF (RAGY, RAGZ)	<i>Y</i> , <i>Z</i> — координаты главного луча, попадающего на линзу, и луча, попадающего на фазовую поверхность;
MNCA, MXCA, MNEA	требования к воздушным промежуткам;
MNCG, MXCG, MNEG	требования к толщинам стекла;
CONF	выбор конфигурации для введения ограничений:
GLCZ	положение по оси Z, взаимное расположение по оси Z поверхностей S1, S1';
GLCY	отслеживание положения по оси <i>Y</i> последней поверхности и микродисплея с применением операнда DIFF, который измеряет разницу;
EFFL	контроль фокусного расстояния с применением дополнительных операндов OPGT и OPLT для задания минимального и максимального значений;
WFNO	значение рабочего фокусного числа, зависящее от параметров краевого луча;
DIMX	контроль дисторсии задается для каждой точки поля по оси У;
DISG	контроль дисторсии задается для всех точек поля;
POWP	power at a point in the pupil вычисляет значения эффективного фокусного расстояния (EFL) после преломления от заданной поверхности в любой точке на зрачке для заданной длины волны;
PMGT, PMLT	операнды для задания диапазона значений. В данном случае будет задаваться диапазон изме- нения децентрировки и наклона;
ОРТН	ограничения длины оптического пути при указанной длине волны;
CVVA	контроль кривизны поверхностей при помощи дополнительных операндов: RECI (возвращает обратно значение), OPGT и OPLT (создают диапазон для ограничения возможных значений), MNCG и MXCG (для контроля толщины стекла заданных поверхностей создают диапазон возможных значений);
RAID	контроль углов, задаются граничные значения.

	0	0 1 01 1						
Iannua 2	Операнлы	OnficSfudio	и их пг	именение	ппи	решении	заланнои	залачи
1 00000000 2.	операнды	opticotadio	ii iin iip	, miniemennie	mpm.	решенни	эаданнон	эада ш

жение, получаемое при прохождении света через разработанный модуль.

Полученная оптическая система имеет широкое поле зрения, 54° по диагонали [11, 12], в то время, как ряд приборов даже сейчас производится со значениями поля зрения 35°, 42° по диагонали. Из аберраций в системе присутствует в основном дисторсия. При этом для коррекции дисторсии, близорукости и дальнозоркости пользователя, а также других дефектов глаза, может

а

быть предусмотрена дополнительная система. Система соответствует требованиям к компактности, размер по каждой оси не превышает 20–25 мм.

В соответствии с рис. 1 и рис. 2, к микродисплею подключается микроконтроллер. При необходимости к оптическому модулю может быть подключена система отслеживания взгляда Eye tracking. В этом случае будет необходимо включение в оптический модуль ИК камеры и ИК светодиодов.

Рис. 7. 3D-модель полученной оптической системы в Zemax OpticStudio (*a*); виртуальное изображение, получаемое при прохождении света через разработанный модуль (б)

Оптический модуль может быть произведен методом литья под давлением [1, 13]. При этом необходима трехосевая система для центрировки и успешного цементирования основной призмы и корректора свободной формы. Контроль формы поверхностей свободной формы может быть осуществлен разными способами, например, иммерсионным или рефлектометрическим.

Литература

- 1. Иванюк А.А. Производство оптического модуля очков дополненной реальности методом литья под давлением // Инновации. Наука. Образование. 2020. № 14. С. 579–589.
- Tractica research. Smart augmented reality glasses. 2018 [Электронный pecypc]. URL: https://tractica.omdia.com/research/smartaugmented-reality-glasses/ (дата обращения: 30.06.20)
- Fournier F.R., Cassarly W.J., Rolland J.P. Fast freeform reflector generation using source-target maps // Optics Express. 2010. V. 18. N 5. P. 5295–5304. doi: 10.1364/OE.18.005295
- 4. Cheng D., Hua H., Wang Y. Optical see-through free-form headmounted display. Patent US20140009845A1. 2014.
- Droessler J.G., Fritz T.A. High brightness see-through head-mounted display. Patent US6147807A. 2000.
- Handbook of Plastic Optics / ed. by S. Bäumer. Wiley-VCH, 2005. P. 98–202. doi: 10.1002/3527605126
- Bajura M., Fuchs H., Ohbuchi R. Merging virtual objects with the real world: seeing ultrasound imagery within the patient // ACM SIGGRAPH Computer Graphics. 1992. V. 26. N 2. P. 203–210. doi: 10.1145/142920.134061
- Rolland J.P., Biocca F., Hamza-Lup F., Ha Y., Martins R. Development of head-mounted projection displays for distributed, collaborative, augmented reality applications // Presence: Teleoperators and Virtual Environments. 2005. V. 14. N 5. P. 528– 549. doi: 10.1162/105474605774918741
- Hua H., Brown L.D., Zhang R. Head-mounted projection display technology and applications // Handbook of Augmented Reality. Springer, 2011. P. 123–155. doi: 10.1007/978-1-4614-0064-6_5
- Sisodia A., Bayer M., Townley-Smith P., Nash B., Little J., Cassarly W., Gupta A. Advanced helmet mounted display (AHMD) // Proceedings of SPIE. 2007. V. 6557. P. 65570N. doi: 10.1117/12.723765
- 11. Русинов М.М. Техническая оптика. Л.: Машиностроение, 1979. С. 20–22, 401–419.
- Русинов М.М. Композиция оптических систем. Л.: Машиностроение, 1989. С. 88–98.
- Hazlett R.D. Fractal applications: Wettability and contact angle // Journal of Colloid and Interface Science. 1990. V. 137. N 2. P. 527– 533. doi: 10.1016/0021-9797(90)90425-N

Авторы

Иванюк Анастасия Александровна — студент, МГТУ им. Н.Э. Баумана, Москва, 105005, Российская Федерация, ORCID ID: 0000-0001-9070-1078, aanastasiia00@gmail.com

Заключение

В работе на конкретном примере рассмотрена задача создания и оптимизации оптического модуля очков дополненной реальности по технологии OST HMD с использованием поверхностей свободной формы. Полученные данные могут быть использованы при проектировании оптического модуля очков дополненной реальности или улучшении показателей уже разработанного оптического элемента.

References

- Ivanjuk A.A. Production of optical module for alternate reality glasses by injection molding. *Innovation. Science. Education*, 2020, no. 14, pp. 579–589. (in Russian)
- Tractica research. Smart augmented reality glasses, 2018. Available at: https://tractica.omdia.com/research/smart-augmented-realityglasses/ (accessed: 30.06.20)
- Fournier F.R., Cassarly W.J., Rolland J.P. Fast freeform reflector generation using source-target maps. *Optics Express*, 2010, vol. 18, no. 5, pp. 5295–5304. doi: 10.1364/OE.18.005295
- Cheng D., Hua H., Wang Y. Optical see-through free-form headmounted display. *Patent US20140009845A1*, 2014.
- Droessler J.G., Fritz T.A. High brightness see-through head-mounted display. *Patent US61478074*, 2000.
- Handbook of Plastic Optics. Ed. by S. Bäumer. Wiley-VCH, 2005, pp. 98–202. doi: 10.1002/3527605126
- Bajura M., Fuchs H., Ohbuchi R. Merging virtual objects with the real world: seeing ultrasound imagery within the patient. ACM SIGGRAPH Computer Graphics, 1992, vol. 26, no. 2, pp. 203–210. doi: 10.1145/142920.134061
- Rolland J.P., Biocca F., Hamza-Lup F., Ha Y., Martins R. Development of head-mounted projection displays for distributed, collaborative, augmented reality applications. *Presence: Teleoperators* and Virtual Environments, 2005, vol. 14, no. 5, pp. 528–549. doi: 10.1162/105474605774918741
- Hua H., Brown L.D., Zhang R. Head-mounted projection display technology and applications. *Handbook of Augmented Reality*. Springer, 2011, pp. 123–155. doi: 10.1007/978-1-4614-0064-6_5
- Sisodia A., Bayer M., Townley-Smith P., Nash B., Little J., Cassarly W., Gupta A. Advanced helmet mounted display (AHMD). *Proceedings of SPIE*, 2007, vol. 6557, pp. 65570N. doi: 10.1117/12.723765
- 11. Rusinov M.M. *Optical Engineering*. Leningrad, Mashinostroenie Publ., 1979, pp. 20–22, 401–419. (in Russian)
- Rusinov M.M. Composition of Optical Systems. Leningrad, Mashinostroenie Publ., 1989, pp. 88–98. (in Russian)
- Hazlett R.D. Fractal applications: Wettability and contact angle. Journal of Colloid and Interface Science, 1990, vol. 137, no. 2, pp. 527–533. doi: 10.1016/0021-9797(90)90425-N

Authors

Anastasiia A. Ivaniuk — Student, Bauman Moscow State Technical University, Moscow, 105005, Russian Federation, ORCID ID: 0000-0001-9070-1078, aanastasiia00@gmail.com