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Abstract
In blockchain, ensuring integrity of data when updating distributed ledgers is a challenging and very fundamental 
process. Most of blockchain networks use Merkle tree to verify the authenticity of data received from other peers on 
the network. However, creating Merkle tree for each block in the network and composing Merkle branch for every 
transaction verification request are time-consuming process requiring heavy computations. Moreover, sending these data 
through the network generates a lot of traffic. Therefore, we proposed an updated mechanism that uses incremental hash 
chain with probabilistic filter to verify block data, provide a proof of data integrity and efficiently update blockchain 
light nodes. In this article, we prove that our model provides better performance and less required computations than 
Merkle tree while maintaining the same security level.
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Аннотация
В блокчейне обеспечение целостности данных при обновлении распределенных реестров является сложным и 
фундаментальным процессом. Большинство сетей блокчейнов для проверки подлинности данных, полученных 
от других одноранговых узлов в сети, используют дерево Меркла. Создание дерева Меркла для каждого блока в 
сети и составление ветви дерева для каждого запроса на проверку транзакции является трудоемким процессом, 
требующим больших вычислений. Кроме того, отправка этих данных по сети генерирует большой трафик. 
В работе предложен обновленный механизм, использующий инкрементную хеш-цепочку с вероятностным 
фильтром для проверки данных блока, предоставления доказательства целостности данных и эффективного 
обновления легких узлов блокчейна. Доказано, что предложенная модель обеспечивает более высокую 
производительность и требует меньше вычислений, чем дерево Меркла, сохраняя при этом тот же уровень 
безопасности.
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Introduction

Blockchain is a peer-to-peer network that manages a 
distributed ledger and commits to some consensus protocol. 
It is considered as a promising and successful technology. 
In addition to its main importance in digital payment 
processing and money transfers, it has many applications 
as in supply chains, digital voting, immutable data backup, 
medical recordkeeping, and many other fields.

In its simple definition, blockchain is a way to 
encapsulate data in blocks where these blocks are linked 
through hash values to create an immutable chain of blocks 
which is very fundamental concept in blockchain to keep 
the data authentic without any possibility of updating or 
manipulating the already added blocks to the blockchain. 
Fig. 1 shows basic structure of blockchain, each block (n) 
in the blockchain consists of its hash (n) and the hash of 
the previous block (n – 1). In this way, every block hash 
is used in the next block header which leads to creating a 
chain of linked blocks.

This chain of hashes gives a way to verify the integrity 
of the blockchain by recalculating the hash for a block 
and comparing with the hash value in the block, then 
using this value to validate the next block. Therefore, any 
change in any block will lead to wrong hash value which 
in turn causes the verification process to fail for all the 
following blocks. This model maintains the integrity of the 
blockchain and provides an immutable distributed ledger 
system. In order to verify the data of blocks, which are 
basically transactions, blockchain relies on Merkle tree 
to verify all transactions existed in the block body using 
Merkle root hash which is stored in the block header [1].

The success of the blockchain concept is connected 
with the financial success of Bitcoin. Therefore, we will 
consider Bitcoin as our case study to explain blockchain 
structure in more detail and understand why Merkle tree is 
fundamental in blockchain. Fig. 2 demonstrates Bitcoin’s 

detailed structure and how Merkle tree is constructed from 
all transactions in a block to produce Merkle root which is 
used to fully verify these transactions.

In Fig. 2, T is timestamp of the block which indicates 
the exact moment in which the block has been mined and 
validated by blockchain network; N is the nonce of the 
block which is a number added by miners to meet difficulty 
level restriction; V is the blockchain version number; diff is 
the difficulty target for the block; and Hx is the hash value 
of transaction x.

We will study Merkle tree model in blockchain and 
the process of verifying blocks transactions, and we will 
introduce our proposed model which replaces Merkle tree 
and provides a more efficient mechanism that requires less 
time and fewer computations for the verification process.

Hash chain

The idea of hash chains was first proposed by 
Lamport to facilitate safeguarding of one time password 
schemes (OTPs) when the attacker is able to eavesdrop 
on communications. Since then it has been employed in 
a wide range of applications, mainly in blockchain. Fig. 3 
shows its concept.

We generate a chain of hashes s j (with j natural number 
≥ 0) by using a hash function h. Every element sk from the 
hash chain is computed by applying hash function h on the 
previous element s k–1; then we use these outputs in inverse 
way [2].

One of the most famous and used type of hash chain 
is binary hash chain or Merkle tree [3]. It is used in many 
applications including blockchain [4–6], health care [7, 8], 
financial transactions [9–11], cloud computing [12, 13] 
and smart grid [14]. Many modified versions of Merkle 
tree have been introduced to provide better performance. 
Modified Merkle tree versions have been proposed to 
provide better time and space [12, 13, 15–17]. All these 

Fig. 1. Blockchain basic structure
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researches show that Merkle tree plays key role in many 
applications, and many modifications has been made to 
match the variety of these applications. 

Merkle tree construction
In blockchain, every block contains a list of transactions. 

Merkle tree is constructed over these transactions providing 
a model to verify integrity of these transactions and that 
they are in correct order. Therefore, every block has its own 

Merkle tree presenting all transactions and identifying by 
Merkle root.

Fig. 4 shows how to construct Merkle tree for a certain 
block. Initially, all transactions inside the block are hashed 
using cryptographic hash function, for instance SHA256 
as in Bitcoin [1]. After that, every two consecutive hash 
values are concatenated and then hashed using the same 
hash function forming their parents.

The same process is performed to the next consecutive 
hashes and repeated until it becomes a single hash value 
which is called Merkle root. (If there is an odd number 
of transactions, last transaction is doubled and its hash 
is concatenated with itself). Finally, the Merkle root is 
stored in the block header and distributed to all peers in 
blockchain network. 

Fig. 2. Bitcoin’s detailed structure

s0  h(s0) = s1  h(s1) = s2  …  h(s j) = s j+1

generate

use

Fig. 3. Hash chain basic concept

Fig. 4. Construction of binary Merkle tree
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Merkle tree verification
In blockchain networks that used the concept of light 

nodes which don’t store the whole blockchain locally, 
they just store headers of the blocks. Therefore, they can’t 
verify the authenticity of some transactions by themselves; 
they have to rely on other trusted full nodes to provide the 
required data to the verification process.

Fig. 5 shows the process of verification on a certain 
transaction in a block. Merkle tree allows peers to verify 
a specific transaction without downloading the whole 
block data. When a user wants to verify a transaction, he 
calculates its hash (the black box in Fig. 5), and then he 
doesn’t require the whole Merkle tree, it requires only some 
hash values from the tree (Merkle branch) in order to be 
able to verify the integrity of the transaction, as shown in 
the blue boxes in Fig. 5 for transaction TD.

Merkle tree analysis
In our analysis we study time complexity and space 

requirements for binary Merkle tree to demonstrate the cost 
of computing the Merkle tree and the required operations 
to verify block data through Merkle branch. 

Let’s consider a block with T transactions. Binary 
Merkle tree for this block has the following attributes:
— The number of leaves is T.
— The number of internal Leaves is T – 1.
— The total number of nodes is n = 2T – 1.
— The height for n nodes is h = log2(n).

Consider Merkle tree performance and issue analysis:
1. Construction time complexity 

To construct Merkle tree for n nodes, we simply 
need to calculate n hash values. Therefore, the 
construction time complexity is O(n).

2. Adding new node time complexity
To add a new node Merkle tree for n node, we 

simply have to recalculate hashes from leaves to root on 
the right side of tree since the insertion process appends 
new node to the last node of the tree; so we just need 
h hash value to be recalculated since h is the height of 

the tree. Therefore, the construction time complexity 
is log2(n).

3. Verification time complexity
Verification of the block integrity using Merkle 

tree requires rebuilding the whole tree again by 
computing the hash of every transaction in the block 
and constructing Merkle tree to reach Merkle root; 
then comparing the computed value with the Merkle 
root value in the block header (which is considered as 
reference value). If two values are equal, then the block 
data is valid, otherwise, it’s not valid. This process 
requires n hash calls. Therefore, the full verification’s 
complexity is O(n).

We don’t need the whole Merkle tree to verify 
the integrity of a certain transaction in a block; we 
just need several hashes to do so. It’s enough to have 
number of hashes equal to the tree height. Therefore, 
the verification time complexity is O(h) which is 
O(log2(n)).

4. Space complexity
To store Merkle tree for n nodes, we simply need to 

store n hash values. Therefore, the space complexity is 
O(n), which is considered a large space.

5. Merkle tree issues
There are some disadvantages in Merkle tree which 

make it not optimal simulation for blockchain:
— The cost of Merkle tree construction is high, especially 

when we have a lot of transactions in block (in average, 
1626 transactions per block in Bitcoin process during 
October 2021)1.

— Blockchain networks don’t store Merkle tree. Therefore, 
full nodes have to construct it and provide Merkle 
branch every time transaction verification is requested. 

1 Blockchain Explorer — Search the Blockchain | BTC | ETH 
| BCH, October 2021. https://www.blockchain.com/charts/n-
transactions-per-block (accessed: 01.11.2021).

Fig. 5. Verification on transaction “TD”

https://www.blockchain.com/charts/n-transactions-per-block
https://www.blockchain.com/charts/n-transactions-per-block
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Moreover, it’s time consuming to rebuild it again for 
every request.

— It creates unnecessary network traffic because it’s 
required to transfer Merkle branch to verify one 
transaction. L network accesses are required to verify 
one block transactions. If we assume that m users are 
requesting the verification the same block, then it causes 
enormous number of network access. Therefore, the 
complexity of verifying one block (one Merkle tree) is 
O(mLlog2n) that affects network performance. 
As a result, Merkle tree has many significant features 

that make it fundamental for blockchain. However, it has 
costly data structure and it needs a lot of resources to be 
constructed. It doesn’t require the whole hash tree to be 
downloaded in order to verify a block of data, instead 
it requires just a few hash values (Merkle branch) to be 
able to verify data authenticity, but still, it takes time and 
resources and needs computing these hashes and also cause 
unnecessary network traffic. Therefore, we need more 
efficient mechanism to verify data integrity and authenticity 
which require less computing and time complexity.

Probabilistic filter

Probabilistic filters are high-speed, space-efficient data 
structures that support approximate membership tests with 
a one-sided error. These filters can claim that a given entry 
is definitely not represented in a set of entries or might 
be represented in the set. Therefore, negative responses 
are conclusive, whereas positive responses incur a small 
false-positive probability (it might sometimes indicate that 
an entry is a member of the represented set although it is 
not). One of the most famous filters is Bloom filter which 
is represented with m bit array. 

Some of Bloom filter properties are:
— It allows for membership check in constant space and 

time. 
— Very infrequently it will give a false-positive answer, 

implies it will say YES if the answer is NO (probably 
in the set).

— It will never give false-negative answer, implies it will 
never say NO if the answer is YES (definitely not in the set).

— Basic Bloom filter supports two operations: test and 
add.

— It has constant time complexity for both adding items 
and asking whether a key is present or not.

— You can’t remove an item from a Bloom filter.
— It also requires much less space compared to the number 

of items you need to store and check.
We can insert an element in this filter by inserting 1 

into k slots in the bit array by k hash functions. When we 
want to check if a certain element is member in this filter 
or not, we must check all k slots if they have 1 value; if 
not, it means that this element is definitely not a member 
of the filter.

Fig. 6 shows an example of a Bloom filter with 
m = 18 bit array and k = 3 hash functions, representing the 
set {x, y, z}. The colored arrows show the positions in the 
bit array that each set element is mapped to. The element w 
is not in the set {x, y, z} because it hashes to one bit-array 
position containing 0. 

Let f is the false-positive rate; n is the number of 
inserted items; k is the number of hash functions; and m 
is the number of bits in the filter. The following equation 
determines the false-positive rate as a function of other 
three parameters [18].

 f ≈ 1 – e– k
. (1)

The following equation determines the optimal number 
of hash functions:

 kopt = ln2. (2)

The following equation determines the array size in bits 
for a given input (n) and desired false-positive rate:

 m = – . (3)

We should carefully choose these parameters to 
optimize the desired Bloom filter. We can get a very low 
false-positive rate that can be neglected.
1. Construction

Building cost for a Bloom filter for a block with 
L transactions is O(Lk), we can consider O(k) ≈ O(1) 
because k is nearly constant.

2. Verification
Verifying cost for a Bloom filter for a transaction in 

a block is O(k), because we only need to check k bits 
in an array.

3. Space
We just need m bits to store a Bloom filter.

Incremental hash chain

We proposed to use incremental hash chain to replace 
Merkle tree by providing more efficient approach to verify 
integrity of data which consume less time and computation 
power than Merkle tree. 

Construction
Block is consisted of many transactions, and in order to 

construct an incremental hash chain for these transactions 
in order to verify that these transactions are correct and in 
the same order, we will start incrementally building our 
hash chain from the first transaction until the last one.

Let a block has L transactions; Ti presents the 
transaction with index i; H(Ti) is the hash value of 
transaction Ti. To calculate the hash value for Ti, we need 
the transaction concatenated with the hash of previous 
transaction (except the first transaction), and it’s given by 
equation 

 H(Ti) = 
H(T1); i = 1
H(H(Ti–1)||Ti); 1 < i ≤ L . (4)

Fig. 6. Bloom filter presentation
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The last hash value of equation (4) is the root of the 
incremental hash value; we call it Incremental Hash Root 
(INR). This value will be stored in the block header and 
transmitted to all nodes to be used in the verification 
process.

Definition 1. IHR for a certain block contains L 
transactions in the incremental hash value of the last 
transaction of that block, and it’s given by the following 
equation
 IHR = H(Tn).

Equation (4) demonstrates that all transactions are 
linked together incrementally, and any change to the data 
or order of transactions will lead to a wrong IHR.

Total hash function calls in a block contain L 
transactions, i.e. exactly L calls. Therefore, construction 
time complexity is O(L), while we need 2L–1 calls in 
binary Merkle tree. Our approach downsizes computation 
time to half, so it uses more efficient mechanism and saves 
power and time.

Verification
In our proposed approach we can verify the block data 

by recomputing IHR again. This process provides overall 
verification for block data. But when it comes to verify a 
single transaction in a block, we cannot use our approach 
to achieve that. Our approach is missing one significant 
feature that Merkle tree provides, it has partial verification. 
Therefore, we integrate incremental hash with Bloom filter 
to achieve this feature.

Incremental Hash Chain Bloom Filter-based 

Merkle tree is costly data structure, and it requires a lot 
of computations when a blockchain requests a transaction 
in a block from a full node. The full node should build a 
Merkle tree for this block and send the transaction with the 
Merkle branch to the light node. Moreover, this process 
will be repeated for every single transaction in a block 
that required a lot of computations and network traffic. We 
proposed a new mechanism using Incremental Hash Chain 
Bloom filter-based to verify transactions.

Miner node side
Mining nodes are only responsible for creating blocks 

to add to the blockchain, let’s consider a miner builds 
a new block containing L transactions. He starts with 
computing hash values for the transactions using equation 
(4) to generate IHR to be added to the block header. In 
our approach, it’s required to build the Bloom filter for 
this block by inserting the hash values of the transactions 
into the filter array, then to compute the hash value of the 
constructed Bloom filter (let’s call this value BFH) and to 
add the resulting hash value to the block header to be used 
later by light nodes in the verification process for checking 
the integrity of received Bloom filter from a full node.

Full node side
In our approach, block header contains IHR and BFH. 

When a full node receives a new block from a miner, it 
will recompute the hash values for all transactions in the 
block to verify IHR value in the block header; then it will 
construct Bloom filter for the block and compute hash value 
for it and compare it with BFH value existing in the block 

header; and at last recompute the block hash to verify the 
block data.

When a light node requests a transaction, the full node 
sends the transaction data, the previous transaction hash, 
and the Bloom filter.

Light node side
A light node requests a transaction and receives 

the response from a full node. The response contains: 
transaction data, previous transaction hash and Bloom 
filter. The light node computes the hash for the Bloom 
filter and compares it with the BFH in the block header. If 
they don’t match, the node rejects the transaction; if they 
match, then the node computes the hash of the transaction 
using equation (4) and gets the transaction hash. After that 
it checks if this hash value exists in the received filter: if it 
exists – the transaction is valid and verified, else the light 
node rejects the transaction.

Considerations
The main problem of our approach is that we rely on 

Probabilistic filter, which doesn’t give us a deterministic 
result; but if we build our filter carefully with choosing the 
perfect parameters for the filter, we can get a very small 
false-positive probability which we can neglect.

By using the equations (1), (2) and (3), let us consider 
Bitcoin where in October 20211, in average, there were 
1626 transactions per block. As for Ethereum, there were 
about 74 transactions in a block (during 2021). Let’s say 
we want to present 2000 transaction in a Bloom filter 
(m = 2000), and we choose the size of the filter as 10 Kbit 
(n = 10 Kbit) and, applying the previous equations, we can 
find the results as shown in Fig. 7, a. 

1 Blockchain Explorer — Search the Blockchain | BTC | ETH 
| BCH, October 2021. https://www.blockchain.com/charts/n-
transactions-per-block (accessed: 01.11.2021).

Fig. 7. Probability of false alarm depending on: filter size (а); 
the number of hash functions (b)

https://www.blockchain.com/charts/n-transactions-per-block
https://www.blockchain.com/charts/n-transactions-per-block
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The false-positive probability is p = 0.000000982 using 
8 hash functions (k = 8), which is considered as neglected 
value.

We can see from (Fig. 7, a, b) that we can tune the 
number of hash functions used in Bloom filter and tune 
the size of the filter according to the size of the input, and 
we can get very small value for p which is neglected; also 
we can have dependence on the Bloom filter to verify the 
partial verification for a transaction in a block.

Analysis

Our proposed solution is much faster than binary 
Merkle tree as demonstrated in Table, it downsizes required 
computation resources to half. We need 2L–1 hash calls 
to construct binary Merkle tree while we only need L 
calls in our solution; it saves more time and computing 
power. When it comes to verification process, our approach 
provides better performance in overall verification when 
we want to verify block data integrity. Moreover, when 
it comes to partial verification, our approach gives better 
performance using O(K) calls to verify a single transaction 
using Bloom filter.

The big difference in our approach is that we need to 
build Bloom filter and send it to the light nodes which 
require transaction verification from this block. But this 
difficulty replaces the need to compute Merkle branch for 
every transaction request which is a very cost operation 
to do. But in our approach we just need to build the filter 
once and use it with all light nodes which gives better 
performance and computing size when we are dealing with 
blocks having big number of transactions (thousands), like 
Bitcoin does.

Collision resistance probability
One of the most import properties in any cryptographic 

hash mechanism is its resistance to collision which means 
getting the same hash value for two different inputs. When 
we want to choose a suitable and secure hash function to 
be used in our solution, we should consider its collision 
resistance. Let H is a hash function with m bits output. 

According to Birthday Paradox [19, 20], the expected hash 
collision with 50 % probability is accrued when we reach 
√2m outputs, for example. If we consider SHA256, since it 
is used in Bitcoin, we face collision with 50 % probability 
after getting 2128 outputs. This means that after getting 2128 
hash values, we would start to get collisions in our system 
with 50 % probability. Therefore, we should consider the 
blockchain hash usage rate to be able to predict the required 
m-bit output hash function.

By studying Bitcoin as the first and the most used 
blockchain network, we find that in average Bitcoin minors 
generate ≈ 291 hashes per year1, so we need 237 years with 
the same computing platform and power consumption. 
Therefore, we can safely consider that SHA256 is suitable 
to our system.

Disadvantage 
In case there is a false-positive value in the Bloom filter, 

we cannot figure out where is the problem. In that case we 
have to request the whole block data (all transactions) from 
a full node, recompute the IHR and compare it with the 
IHR in the block header to check the integrity of the whole 
block data. All that requires a lot of computations and gives 
a bad performance. However, many recent researches prove 
that the false-positive probability is negligible [21], and 
a Bloom filter research with free zones is required [22]. 
Therefore, we can say that the probability is negligible.

Conclusion 

In this article, we introduce a new approach to replace 
binary Merkle tree in blockchain by proposing more 
efficient model using incremental hash chain Bloom filter-
based. Our solution consumes less computing power than 
binary Merkle tree. Moreover, it needs less time and space 
to construct the model and verify the integrity of blockchain 
data. We compare our mode with binary Merkle tree and 
prove that our model is more efficient in every aspect.

1 Blockchain Explorer — Search the Blockchain | BTC | ETH 
| BCH, October 2021. https://www.blockchain.com/charts/n-
transactions-per-block (accessed: 01.11.2021).

Table. Comparison between binary Merkle tree and our proposed incremental hash chain model

Feature Binary Merkle tree Our approach

Construction cost O(n) O(L) for IHR
O(KL) for Bloom filter

Verification of a transaction O(log2n) O(K)
Verification of all transactions O(nlog2n) O(L)
Space cost O(n) O(L)

https://www.blockchain.com/charts/n-transactions-per-block
https://www.blockchain.com/charts/n-transactions-per-block
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