
Научно-технический вестник информационных технологий, механики и оптики, 2022, том 22, № 3
538 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no 3

 НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

 май–июнь 2022 Том 22 № 3 http://ntv.ifmo.ru/

 SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS

 May–June 2022 Vol. 22 No 3 http://ntv.ifmo.ru/en/

 ISSN 2226-1494 (print) ISSN 2500-0373 (online)

май–июнь 2022 Том 22 Номер 3

© Maalla M.A., Bezzateev S.V., 2022

doi: 10.17586/2226-1494-2022-22-3-538-546

Efficient incremental hash chain with probabilistic filter-based method
to update blockchain light nodes

Maher A. Maalla1, Sergey V. Bezzateev2

1,2 ITMO University, Saint Petersburg, 197101, Russian Federation
2 Saint Petersburg State University of Aerospace Instrumentation, Saint Petersburg, 190000, Russian Federation
1 maher.malla7@gmail.com, https://orcid.org/0000-0002-4806-8608
2 bsv@aanet.ru, https://orcid.org/0000-0002-0924-6221

Abstract
In blockchain, ensuring integrity of data when updating distributed ledgers is a challenging and very fundamental
process. Most of blockchain networks use Merkle tree to verify the authenticity of data received from other peers on
the network. However, creating Merkle tree for each block in the network and composing Merkle branch for every
transaction verification request are time-consuming process requiring heavy computations. Moreover, sending these data
through the network generates a lot of traffic. Therefore, we proposed an updated mechanism that uses incremental hash
chain with probabilistic filter to verify block data, provide a proof of data integrity and efficiently update blockchain
light nodes. In this article, we prove that our model provides better performance and less required computations than
Merkle tree while maintaining the same security level.
Keywords
Merkle tree, blockchain, hash chain, probabilistic filter, hash function, integrity
For citation: Maalla M.A., Bezzateev S.V. Efficient incremental hash chain with probabilistic filter-based method to
update blockchain light nodes. Scientific and Technical Journal of Information Technologies, Mechanics and Optics,
2022, vol. 22, no. 3, pp. 538–546. doi: 10.17586/2226-1494-2022-22-3-538-546

УДК 004.056.55
Эффективная инкрементная хеш-цепочка с вероятностным методом

на основе фильтра для обновления легких узлов блокчейна
Махер Аднан Маалла1, Сергей Валентинович Беззатеев2

1,2 Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация
2 Санкт-Петербургский государственный университет аэрокосмического приборостроения, Санкт-Петербург,
190000, Российская Федерация
1 maher.malla7@gmail.com, https://orcid.org/0000-0002-4806-8608
2 bsv@aanet.ru, https://orcid.org/0000-0002-0924-6221

Аннотация
В блокчейне обеспечение целостности данных при обновлении распределенных реестров является сложным и
фундаментальным процессом. Большинство сетей блокчейнов для проверки подлинности данных, полученных
от других одноранговых узлов в сети, используют дерево Меркла. Создание дерева Меркла для каждого блока в
сети и составление ветви дерева для каждого запроса на проверку транзакции является трудоемким процессом,
требующим больших вычислений. Кроме того, отправка этих данных по сети генерирует большой трафик.
В работе предложен обновленный механизм, использующий инкрементную хеш-цепочку с вероятностным
фильтром для проверки данных блока, предоставления доказательства целостности данных и эффективного
обновления легких узлов блокчейна. Доказано, что предложенная модель обеспечивает более высокую
производительность и требует меньше вычислений, чем дерево Меркла, сохраняя при этом тот же уровень
безопасности.

http://ntv.ifmo.ru/
http://ntv.ifmo.ru/en/
mailto:maher.malla7@gmail.com
https://orcid.org/0000-0002-4806-8608
mailto:bsv@aanet.ru
https://orcid.org/0000-0002-0924-6221
mailto:maher.malla7@gmail.com
https://orcid.org/0000-0002-4806-8608
mailto:bsv@aanet.ru
https://orcid.org/0000-0002-0924-6221

Научно-технический вестник информационных технологий, механики и оптики, 2022, том 22, № 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no 3 539

Ключевые слова
дерево Меркла, блокчейн, хеш-цепочка, вероятностный фильтр, хеш-функция, целостность
Ссылка для цитирования: Маалла М.А., Беззатеев С.В. Эффективная инкрементная хеш-цепочка с
вероятностным методом на основе фильтра для обновления легких узлов блокчейна // Научно-технический
вестник информационных технологий, механики и оптики. 2022. Т. 22, № 3. С. 538–546 (на англ. яз.). doi:
10.17586/2226-1494-2022-22-3-538-546

Introduction

Blockchain is a peer-to-peer network that manages a
distributed ledger and commits to some consensus protocol.
It is considered as a promising and successful technology.
In addition to its main importance in digital payment
processing and money transfers, it has many applications
as in supply chains, digital voting, immutable data backup,
medical recordkeeping, and many other fields.

In its simple definition, blockchain is a way to
encapsulate data in blocks where these blocks are linked
through hash values to create an immutable chain of blocks
which is very fundamental concept in blockchain to keep
the data authentic without any possibility of updating or
manipulating the already added blocks to the blockchain.
Fig. 1 shows basic structure of blockchain, each block (n)
in the blockchain consists of its hash (n) and the hash of
the previous block (n – 1). In this way, every block hash
is used in the next block header which leads to creating a
chain of linked blocks.

This chain of hashes gives a way to verify the integrity
of the blockchain by recalculating the hash for a block
and comparing with the hash value in the block, then
using this value to validate the next block. Therefore, any
change in any block will lead to wrong hash value which
in turn causes the verification process to fail for all the
following blocks. This model maintains the integrity of the
blockchain and provides an immutable distributed ledger
system. In order to verify the data of blocks, which are
basically transactions, blockchain relies on Merkle tree
to verify all transactions existed in the block body using
Merkle root hash which is stored in the block header [1].

The success of the blockchain concept is connected
with the financial success of Bitcoin. Therefore, we will
consider Bitcoin as our case study to explain blockchain
structure in more detail and understand why Merkle tree is
fundamental in blockchain. Fig. 2 demonstrates Bitcoin’s

detailed structure and how Merkle tree is constructed from
all transactions in a block to produce Merkle root which is
used to fully verify these transactions.

In Fig. 2, T is timestamp of the block which indicates
the exact moment in which the block has been mined and
validated by blockchain network; N is the nonce of the
block which is a number added by miners to meet difficulty
level restriction; V is the blockchain version number; diff is
the difficulty target for the block; and Hx is the hash value
of transaction x.

We will study Merkle tree model in blockchain and
the process of verifying blocks transactions, and we will
introduce our proposed model which replaces Merkle tree
and provides a more efficient mechanism that requires less
time and fewer computations for the verification process.

Hash chain

The idea of hash chains was first proposed by
Lamport to facilitate safeguarding of one time password
schemes (OTPs) when the attacker is able to eavesdrop
on communications. Since then it has been employed in
a wide range of applications, mainly in blockchain. Fig. 3
shows its concept.

We generate a chain of hashes s j (with j natural number
≥ 0) by using a hash function h. Every element sk from the
hash chain is computed by applying hash function h on the
previous element s k–1; then we use these outputs in inverse
way [2].

One of the most famous and used type of hash chain
is binary hash chain or Merkle tree [3]. It is used in many
applications including blockchain [4–6], health care [7, 8],
financial transactions [9–11], cloud computing [12, 13]
and smart grid [14]. Many modified versions of Merkle
tree have been introduced to provide better performance.
Modified Merkle tree versions have been proposed to
provide better time and space [12, 13, 15–17]. All these

Fig. 1. Blockchain basic structure

M.A. Maalla, S.V. Bezzateev

Efficient incremental hash chain with probabilistic filter-based method to update blockchain light nodes

Научно-технический вестник информационных технологий, механики и оптики, 2022, том 22, № 3
540 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no 3

researches show that Merkle tree plays key role in many
applications, and many modifications has been made to
match the variety of these applications.

Merkle tree construction
In blockchain, every block contains a list of transactions.

Merkle tree is constructed over these transactions providing
a model to verify integrity of these transactions and that
they are in correct order. Therefore, every block has its own

Merkle tree presenting all transactions and identifying by
Merkle root.

Fig. 4 shows how to construct Merkle tree for a certain
block. Initially, all transactions inside the block are hashed
using cryptographic hash function, for instance SHA256
as in Bitcoin [1]. After that, every two consecutive hash
values are concatenated and then hashed using the same
hash function forming their parents.

The same process is performed to the next consecutive
hashes and repeated until it becomes a single hash value
which is called Merkle root. (If there is an odd number
of transactions, last transaction is doubled and its hash
is concatenated with itself). Finally, the Merkle root is
stored in the block header and distributed to all peers in
blockchain network.

Fig. 2. Bitcoin’s detailed structure

s0 h(s0) = s1 h(s1) = s2 … h(s j) = s j+1

generate

use

Fig. 3. Hash chain basic concept

Fig. 4. Construction of binary Merkle tree

Научно-технический вестник информационных технологий, механики и оптики, 2022, том 22, № 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no 3 541

M.A. Maalla, S.V. Bezzateev

Merkle tree verification
In blockchain networks that used the concept of light

nodes which don’t store the whole blockchain locally,
they just store headers of the blocks. Therefore, they can’t
verify the authenticity of some transactions by themselves;
they have to rely on other trusted full nodes to provide the
required data to the verification process.

Fig. 5 shows the process of verification on a certain
transaction in a block. Merkle tree allows peers to verify
a specific transaction without downloading the whole
block data. When a user wants to verify a transaction, he
calculates its hash (the black box in Fig. 5), and then he
doesn’t require the whole Merkle tree, it requires only some
hash values from the tree (Merkle branch) in order to be
able to verify the integrity of the transaction, as shown in
the blue boxes in Fig. 5 for transaction TD.

Merkle tree analysis
In our analysis we study time complexity and space

requirements for binary Merkle tree to demonstrate the cost
of computing the Merkle tree and the required operations
to verify block data through Merkle branch.

Let’s consider a block with T transactions. Binary
Merkle tree for this block has the following attributes:
— The number of leaves is T.
— The number of internal Leaves is T – 1.
— The total number of nodes is n = 2T – 1.
— The height for n nodes is h = log2(n).

Consider Merkle tree performance and issue analysis:
1. Construction time complexity

To construct Merkle tree for n nodes, we simply
need to calculate n hash values. Therefore, the
construction time complexity is O(n).

2. Adding new node time complexity
To add a new node Merkle tree for n node, we

simply have to recalculate hashes from leaves to root on
the right side of tree since the insertion process appends
new node to the last node of the tree; so we just need
h hash value to be recalculated since h is the height of

the tree. Therefore, the construction time complexity
is log2(n).

3. Verification time complexity
Verification of the block integrity using Merkle

tree requires rebuilding the whole tree again by
computing the hash of every transaction in the block
and constructing Merkle tree to reach Merkle root;
then comparing the computed value with the Merkle
root value in the block header (which is considered as
reference value). If two values are equal, then the block
data is valid, otherwise, it’s not valid. This process
requires n hash calls. Therefore, the full verification’s
complexity is O(n).

We don’t need the whole Merkle tree to verify
the integrity of a certain transaction in a block; we
just need several hashes to do so. It’s enough to have
number of hashes equal to the tree height. Therefore,
the verification time complexity is O(h) which is
O(log2(n)).

4. Space complexity
To store Merkle tree for n nodes, we simply need to

store n hash values. Therefore, the space complexity is
O(n), which is considered a large space.

5. Merkle tree issues
There are some disadvantages in Merkle tree which

make it not optimal simulation for blockchain:
— The cost of Merkle tree construction is high, especially

when we have a lot of transactions in block (in average,
1626 transactions per block in Bitcoin process during
October 2021)1.

— Blockchain networks don’t store Merkle tree. Therefore,
full nodes have to construct it and provide Merkle
branch every time transaction verification is requested.

1 Blockchain Explorer — Search the Blockchain | BTC | ETH
| BCH, October 2021. https://www.blockchain.com/charts/n-
transactions-per-block (accessed: 01.11.2021).

Fig. 5. Verification on transaction “TD”

https://www.blockchain.com/charts/n-transactions-per-block
https://www.blockchain.com/charts/n-transactions-per-block

Efficient incremental hash chain with probabilistic filter-based method to update blockchain light nodes

Научно-технический вестник информационных технологий, механики и оптики, 2022, том 22, № 3
542 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no 3

Moreover, it’s time consuming to rebuild it again for
every request.

— It creates unnecessary network traffic because it’s
required to transfer Merkle branch to verify one
transaction. L network accesses are required to verify
one block transactions. If we assume that m users are
requesting the verification the same block, then it causes
enormous number of network access. Therefore, the
complexity of verifying one block (one Merkle tree) is
O(mLlog2n) that affects network performance.
As a result, Merkle tree has many significant features

that make it fundamental for blockchain. However, it has
costly data structure and it needs a lot of resources to be
constructed. It doesn’t require the whole hash tree to be
downloaded in order to verify a block of data, instead
it requires just a few hash values (Merkle branch) to be
able to verify data authenticity, but still, it takes time and
resources and needs computing these hashes and also cause
unnecessary network traffic. Therefore, we need more
efficient mechanism to verify data integrity and authenticity
which require less computing and time complexity.

Probabilistic filter

Probabilistic filters are high-speed, space-efficient data
structures that support approximate membership tests with
a one-sided error. These filters can claim that a given entry
is definitely not represented in a set of entries or might
be represented in the set. Therefore, negative responses
are conclusive, whereas positive responses incur a small
false-positive probability (it might sometimes indicate that
an entry is a member of the represented set although it is
not). One of the most famous filters is Bloom filter which
is represented with m bit array.

Some of Bloom filter properties are:
— It allows for membership check in constant space and

time.
— Very infrequently it will give a false-positive answer,

implies it will say YES if the answer is NO (probably
in the set).

— It will never give false-negative answer, implies it will
never say NO if the answer is YES (definitely not in the set).

— Basic Bloom filter supports two operations: test and
add.

— It has constant time complexity for both adding items
and asking whether a key is present or not.

— You can’t remove an item from a Bloom filter.
— It also requires much less space compared to the number

of items you need to store and check.
We can insert an element in this filter by inserting 1

into k slots in the bit array by k hash functions. When we
want to check if a certain element is member in this filter
or not, we must check all k slots if they have 1 value; if
not, it means that this element is definitely not a member
of the filter.

Fig. 6 shows an example of a Bloom filter with
m = 18 bit array and k = 3 hash functions, representing the
set {x, y, z}. The colored arrows show the positions in the
bit array that each set element is mapped to. The element w
is not in the set {x, y, z} because it hashes to one bit-array
position containing 0.

Let f is the false-positive rate; n is the number of
inserted items; k is the number of hash functions; and m
is the number of bits in the filter. The following equation
determines the false-positive rate as a function of other
three parameters [18].

 f ≈ 1 – e– k
. (1)

The following equation determines the optimal number
of hash functions:

 kopt = ln2. (2)

The following equation determines the array size in bits
for a given input (n) and desired false-positive rate:

 m = – . (3)

We should carefully choose these parameters to
optimize the desired Bloom filter. We can get a very low
false-positive rate that can be neglected.
1. Construction

Building cost for a Bloom filter for a block with
L transactions is O(Lk), we can consider O(k) ≈ O(1)
because k is nearly constant.

2. Verification
Verifying cost for a Bloom filter for a transaction in

a block is O(k), because we only need to check k bits
in an array.

3. Space
We just need m bits to store a Bloom filter.

Incremental hash chain

We proposed to use incremental hash chain to replace
Merkle tree by providing more efficient approach to verify
integrity of data which consume less time and computation
power than Merkle tree.

Construction
Block is consisted of many transactions, and in order to

construct an incremental hash chain for these transactions
in order to verify that these transactions are correct and in
the same order, we will start incrementally building our
hash chain from the first transaction until the last one.

Let a block has L transactions; Ti presents the
transaction with index i; H(Ti) is the hash value of
transaction Ti. To calculate the hash value for Ti, we need
the transaction concatenated with the hash of previous
transaction (except the first transaction), and it’s given by
equation

 H(Ti) =
H(T1); i = 1
H(H(Ti–1)||Ti); 1 < i ≤ L . (4)

Fig. 6. Bloom filter presentation

Научно-технический вестник информационных технологий, механики и оптики, 2022, том 22, № 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no 3 543

M.A. Maalla, S.V. Bezzateev

The last hash value of equation (4) is the root of the
incremental hash value; we call it Incremental Hash Root
(INR). This value will be stored in the block header and
transmitted to all nodes to be used in the verification
process.

Definition 1. IHR for a certain block contains L
transactions in the incremental hash value of the last
transaction of that block, and it’s given by the following
equation
 IHR = H(Tn).

Equation (4) demonstrates that all transactions are
linked together incrementally, and any change to the data
or order of transactions will lead to a wrong IHR.

Total hash function calls in a block contain L
transactions, i.e. exactly L calls. Therefore, construction
time complexity is O(L), while we need 2L–1 calls in
binary Merkle tree. Our approach downsizes computation
time to half, so it uses more efficient mechanism and saves
power and time.

Verification
In our proposed approach we can verify the block data

by recomputing IHR again. This process provides overall
verification for block data. But when it comes to verify a
single transaction in a block, we cannot use our approach
to achieve that. Our approach is missing one significant
feature that Merkle tree provides, it has partial verification.
Therefore, we integrate incremental hash with Bloom filter
to achieve this feature.

Incremental Hash Chain Bloom Filter-based

Merkle tree is costly data structure, and it requires a lot
of computations when a blockchain requests a transaction
in a block from a full node. The full node should build a
Merkle tree for this block and send the transaction with the
Merkle branch to the light node. Moreover, this process
will be repeated for every single transaction in a block
that required a lot of computations and network traffic. We
proposed a new mechanism using Incremental Hash Chain
Bloom filter-based to verify transactions.

Miner node side
Mining nodes are only responsible for creating blocks

to add to the blockchain, let’s consider a miner builds
a new block containing L transactions. He starts with
computing hash values for the transactions using equation
(4) to generate IHR to be added to the block header. In
our approach, it’s required to build the Bloom filter for
this block by inserting the hash values of the transactions
into the filter array, then to compute the hash value of the
constructed Bloom filter (let’s call this value BFH) and to
add the resulting hash value to the block header to be used
later by light nodes in the verification process for checking
the integrity of received Bloom filter from a full node.

Full node side
In our approach, block header contains IHR and BFH.

When a full node receives a new block from a miner, it
will recompute the hash values for all transactions in the
block to verify IHR value in the block header; then it will
construct Bloom filter for the block and compute hash value
for it and compare it with BFH value existing in the block

header; and at last recompute the block hash to verify the
block data.

When a light node requests a transaction, the full node
sends the transaction data, the previous transaction hash,
and the Bloom filter.

Light node side
A light node requests a transaction and receives

the response from a full node. The response contains:
transaction data, previous transaction hash and Bloom
filter. The light node computes the hash for the Bloom
filter and compares it with the BFH in the block header. If
they don’t match, the node rejects the transaction; if they
match, then the node computes the hash of the transaction
using equation (4) and gets the transaction hash. After that
it checks if this hash value exists in the received filter: if it
exists – the transaction is valid and verified, else the light
node rejects the transaction.

Considerations
The main problem of our approach is that we rely on

Probabilistic filter, which doesn’t give us a deterministic
result; but if we build our filter carefully with choosing the
perfect parameters for the filter, we can get a very small
false-positive probability which we can neglect.

By using the equations (1), (2) and (3), let us consider
Bitcoin where in October 20211, in average, there were
1626 transactions per block. As for Ethereum, there were
about 74 transactions in a block (during 2021). Let’s say
we want to present 2000 transaction in a Bloom filter
(m = 2000), and we choose the size of the filter as 10 Kbit
(n = 10 Kbit) and, applying the previous equations, we can
find the results as shown in Fig. 7, a.

1 Blockchain Explorer — Search the Blockchain | BTC | ETH
| BCH, October 2021. https://www.blockchain.com/charts/n-
transactions-per-block (accessed: 01.11.2021).

Fig. 7. Probability of false alarm depending on: filter size (а);
the number of hash functions (b)

https://www.blockchain.com/charts/n-transactions-per-block
https://www.blockchain.com/charts/n-transactions-per-block

Efficient incremental hash chain with probabilistic filter-based method to update blockchain light nodes

Научно-технический вестник информационных технологий, механики и оптики, 2022, том 22, № 3
544 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no 3

The false-positive probability is p = 0.000000982 using
8 hash functions (k = 8), which is considered as neglected
value.

We can see from (Fig. 7, a, b) that we can tune the
number of hash functions used in Bloom filter and tune
the size of the filter according to the size of the input, and
we can get very small value for p which is neglected; also
we can have dependence on the Bloom filter to verify the
partial verification for a transaction in a block.

Analysis

Our proposed solution is much faster than binary
Merkle tree as demonstrated in Table, it downsizes required
computation resources to half. We need 2L–1 hash calls
to construct binary Merkle tree while we only need L
calls in our solution; it saves more time and computing
power. When it comes to verification process, our approach
provides better performance in overall verification when
we want to verify block data integrity. Moreover, when
it comes to partial verification, our approach gives better
performance using O(K) calls to verify a single transaction
using Bloom filter.

The big difference in our approach is that we need to
build Bloom filter and send it to the light nodes which
require transaction verification from this block. But this
difficulty replaces the need to compute Merkle branch for
every transaction request which is a very cost operation
to do. But in our approach we just need to build the filter
once and use it with all light nodes which gives better
performance and computing size when we are dealing with
blocks having big number of transactions (thousands), like
Bitcoin does.

Collision resistance probability
One of the most import properties in any cryptographic

hash mechanism is its resistance to collision which means
getting the same hash value for two different inputs. When
we want to choose a suitable and secure hash function to
be used in our solution, we should consider its collision
resistance. Let H is a hash function with m bits output.

According to Birthday Paradox [19, 20], the expected hash
collision with 50 % probability is accrued when we reach
√2m outputs, for example. If we consider SHA256, since it
is used in Bitcoin, we face collision with 50 % probability
after getting 2128 outputs. This means that after getting 2128
hash values, we would start to get collisions in our system
with 50 % probability. Therefore, we should consider the
blockchain hash usage rate to be able to predict the required
m-bit output hash function.

By studying Bitcoin as the first and the most used
blockchain network, we find that in average Bitcoin minors
generate ≈ 291 hashes per year1, so we need 237 years with
the same computing platform and power consumption.
Therefore, we can safely consider that SHA256 is suitable
to our system.

Disadvantage
In case there is a false-positive value in the Bloom filter,

we cannot figure out where is the problem. In that case we
have to request the whole block data (all transactions) from
a full node, recompute the IHR and compare it with the
IHR in the block header to check the integrity of the whole
block data. All that requires a lot of computations and gives
a bad performance. However, many recent researches prove
that the false-positive probability is negligible [21], and
a Bloom filter research with free zones is required [22].
Therefore, we can say that the probability is negligible.

Conclusion

In this article, we introduce a new approach to replace
binary Merkle tree in blockchain by proposing more
efficient model using incremental hash chain Bloom filter-
based. Our solution consumes less computing power than
binary Merkle tree. Moreover, it needs less time and space
to construct the model and verify the integrity of blockchain
data. We compare our mode with binary Merkle tree and
prove that our model is more efficient in every aspect.

1 Blockchain Explorer — Search the Blockchain | BTC | ETH
| BCH, October 2021. https://www.blockchain.com/charts/n-
transactions-per-block (accessed: 01.11.2021).

Table. Comparison between binary Merkle tree and our proposed incremental hash chain model

Feature Binary Merkle tree Our approach

Construction cost O(n) O(L) for IHR
O(KL) for Bloom filter

Verification of a transaction O(log2n) O(K)
Verification of all transactions O(nlog2n) O(L)
Space cost O(n) O(L)

https://www.blockchain.com/charts/n-transactions-per-block
https://www.blockchain.com/charts/n-transactions-per-block

Научно-технический вестник информационных технологий, механики и оптики, 2022, том 22, № 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no 3 545

M.A. Maalla, S.V. Bezzateev

References
1. Nakamoto S. Bitcoin: A peer-to-peer electronic cash system.

Decentralized Business Review, 2008, pp. 21260.
2. Lamport L. Password authentication with insecure communication.

Communications of the ACM, 1981, vol. 24, no. 11, pp. 770–772.
https://doi.org/10.1145/358790.358797

3. Merkle R.C. A digital signature based on a conventional encryption
function. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 1988, vol. 293, pp. 369–378. https://doi.
org/10.1007/3-540-48184-2_32

4. Wang S., Ouyang L., Yuan Y., Ni X., Han X., Wang F.-Y. Blockchain-
enabled smart contracts: architecture, applications, and future trends.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019,
vol. 49, no. 11, pp. 2266–2277. https://doi.org/10.1109/
TSMC.2019.2895123

5. Das K., Bera B., Saha S., Kumar N., You I., Chao H.-C. AI-envisioned
blockchain-enabled signature-based key management scheme for
industrial cyber-physical systems. IEEE Internet of Things Journal,
2022, vol. 9, no. 9, pp. 6374–6388. https://doi.org/10.1109/
JIOT.2021.3109314

6. Sharma P., Jindal R., Borah M.D. Blockchain technology for cloud
storage: A systematic literature review. ACM Computing Surveys,
2020, vol. 53, no. 4, pp. 3403954. https://doi.org/10.1145/3403954

7. Hariharasitaraman S., Balakannan S.P. A dynamic data security
mechanism based on position aware Merkle tree for health
rehabilitation services over cloud. Journal of Ambient Intelligence
and Humanized Computing, 2019, in press. https://doi.org/10.1007/
s12652-019-01412-0

8. Alzubi J.A. Blockchain-based Lamport Merkle Digital Signature:
Authentication tool in IoT healthcare. Computer Communications,
2021, vol. 170, pp. 200–208. https:/ /doi.org/10.1016/j .
comcom.2021.02.002

9. Dhumwad S., Sukhadeve M., Naik C., Manjunath K.N., Prabhu S. A
peer to peer money transfer using SHA256 and Merkle tree. Proc. of
the 23rd Annual International Conference in Advanced Computing
and Communications (ADCOM), 2017, pp. 40–43. https://doi.
org/10.1109/ADCOM.2017.00013

10. Zhang D., Le J., Mu N., Liao X. An anonymous off-blockchain
micropayments scheme for cryptocurrencies in the real world. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2020,
v o l . 5 0 , n o . 1 , p p . 3 2 – 4 2 . h t t p s : / / d o i . o rg / 1 0 . 11 0 9 /
TSMC.2018.2884289

11. Ojetunde B., Shibata N., Gao J. Secure payment system utilizing
MANET for disaster areas. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 2019, vol. 49, no. 12, pp. 2651–2663. https://
doi.org/10.1109/TSMC.2017.2752203

12. Zhou Z., Wang B., Dong M., Ota K. Secure and efficient vehicle-to-
grid energy trading in cyber physical systems: Integration of
blockchain and edge computing. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 2020, vol. 50, no. 1, pp. 43–57. https://doi.
org/10.1109/TSMC.2019.2896323

13. Mao J., Zhang Y., Li P., Li T., Wu Q., Liu J. A position-aware Merkle
tree for dynamic cloud data integrity verification. Soft Computing,
2017, vol. 21, no. 8, pp. 2151–2164. https://doi.org/10.1007/s00500-
015-1918-8

14. Li H., Lu R., Zhou L., Yang B., Shen X. An efficient Merkle-tree-
based authentication scheme for smart grid. IEEE Systems Journal,
2014, vol. 8, no. 2, pp. 655–663. https://doi.org/10.1109/
JSYST.2013.2271537

15. Jakobsson M., Leighton T., Micali S., Szydlo M. Fractal Merkle tree
representation and traversal. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2003, vol. 2612, pp. 314–326.
https://doi.org/10.1007/3-540-36563-X_21

16. Buchmann J., Dahmen E., Schneider M. Merkle tree traversal
revisited. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2008, vol. 5299, pp. 63–78. https://doi.
org/10.1007/978-3-540-88403-3_5

17. Chelladurai U., Pandian S. HARE: A new hash-based authenticated
reliable and efficient Modified Merkle Tree data structure to ensure
integrity of data in the healthcare systems. Journal of Ambient
Intelligence and Humanized Computing, 2021, in press. https://doi.
org/10.1007/s12652-021-03085-0

Литература
1. Nakamoto S. Bitcoin: A peer-to-peer electronic cash system //

Decentralized Business Review. 2008. P. 21260.
2. Lamport L. Password authentication with insecure communication //

Communications of the ACM. 1981. V. 24. N 11. P. 770–772. https://
doi.org/10.1145/358790.358797

3. Merkle R.C. A digital signature based on a conventional encryption
function // Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). 1988. V. 293. P. 369–378. https://doi.org/10.1007/3-
540-48184-2_32

4. Wang S., Ouyang L., Yuan Y., Ni X., Han X., Wang F.-Y. Blockchain-
enabled smart contracts: architecture, applications, and future trends
// IEEE Transactions on Systems, Man, and Cybernetics: Systems.
2019. V. 49. N 11. P. 2266–2277. https://doi.org/10.1109/
TSMC.2019.2895123

5. Das K., Bera B., Saha S., Kumar N., You I., Chao H.-C. AI-envisioned
blockchain-enabled signature-based key management scheme for
industrial cyber-physical systems // IEEE Internet of Things Journal.
2022. V. 9. N 9. P. 6374–6388. https://doi.org/10.1109/
JIOT.2021.3109314

6. Sharma P., Jindal R., Borah M.D. Blockchain technology for cloud
storage: A systematic literature review // ACM Computing Surveys.
2020. V. 53. N 4. P. 3403954. https://doi.org/10.1145/3403954

7. Hariharasitaraman S., Balakannan S.P. A dynamic data security
mechanism based on position aware Merkle tree for health
rehabilitation services over cloud // Journal of Ambient Intelligence
and Humanized Computing. 2019. in press. https://doi.org/10.1007/
s12652-019-01412-0

8. Alzubi J.A. Blockchain-based Lamport Merkle Digital Signature:
Authentication tool in IoT healthcare // Computer Communications.
2021 . V. 170 . P. 200–208 . h t tps : / /do i .o rg /10 .1016 / j .
comcom.2021.02.002

9. Dhumwad S., Sukhadeve M., Naik C., Manjunath K.N., Prabhu S. A
peer to peer money transfer using SHA256 and Merkle tree // Proc.
of the 23rd Annual International Conference in Advanced Computing
and Communications (ADCOM). 2017. P. 40–43. https://doi.
org/10.1109/ADCOM.2017.00013

10. Zhang D., Le J., Mu N., Liao X. An anonymous off-blockchain
micropayments scheme for cryptocurrencies in the real world // IEEE
Transactions on Systems, Man, and Cybernetics: Systems. 2020.
V. 50. N 1. P. 32–42. https://doi.org/10.1109/TSMC.2018.2884289

11. Ojetunde B., Shibata N., Gao J. Secure payment system utilizing
MANET for disaster areas // IEEE Transactions on Systems, Man,
and Cybernetics: Systems. 2019. V. 49. N 12. P. 2651–2663. https://
doi.org/10.1109/TSMC.2017.2752203

12. Zhou Z., Wang B., Dong M., Ota K. Secure and efficient vehicle-to-
grid energy trading in cyber physical systems: Integration of
blockchain and edge computing // IEEE Transactions on Systems,
Man, and Cybernetics: Systems. 2020. V. 50. N 1. P. 43–57. https://
doi.org/10.1109/TSMC.2019.2896323

13. Mao J., Zhang Y., Li P., Li T., Wu Q., Liu J. A position-aware Merkle
tree for dynamic cloud data integrity verification // Soft Computing.
2017. V. 21. N 8. P. 2151–2164. https://doi.org/10.1007/s00500-015-
1918-8

14. Li H., Lu R., Zhou L., Yang B., Shen X. An efficient Merkle-tree-
based authentication scheme for smart grid // IEEE Systems Journal.
2014. V. 8 . N 2. P. 655–663. h t tps : / /doi .org/10.1109/
JSYST.2013.2271537

15. Jakobsson M., Leighton T., Micali S., Szydlo M. Fractal Merkle tree
representation and traversal // Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). 2003. V. 2612. P. 314–326. https://
doi.org/10.1007/3-540-36563-X_21

16. Buchmann J., Dahmen E., Schneider M. Merkle tree traversal
revisited // Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). 2008. V. 5299. P. 63–78. https://doi.org/10.1007/978-
3-540-88403-3_5

17. Chelladurai U., Pandian S. HARE: A new hash-based authenticated
reliable and efficient Modified Merkle Tree data structure to ensure
integrity of data in the healthcare systems // Journal of Ambient
Intelligence and Humanized Computing. 2021. in press. https://doi.
org/10.1007/s12652-021-03085-0

https://doi.org/10.1145/358790.358797
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1109/TSMC.2019.2895123
https://doi.org/10.1109/TSMC.2019.2895123
https://doi.org/10.1109/JIOT.2021.3109314
https://doi.org/10.1109/JIOT.2021.3109314
https://doi.org/10.1145/3403954
https://doi.org/10.1007/s12652-019-01412-0
https://doi.org/10.1007/s12652-019-01412-0
https://doi.org/10.1016/j.comcom.2021.02.002
https://doi.org/10.1016/j.comcom.2021.02.002
https://doi.org/10.1109/ADCOM.2017.00013
https://doi.org/10.1109/ADCOM.2017.00013
https://doi.org/10.1109/TSMC.2018.2884289
https://doi.org/10.1109/TSMC.2018.2884289
https://doi.org/10.1109/TSMC.2017.2752203
https://doi.org/10.1109/TSMC.2017.2752203
https://doi.org/10.1109/TSMC.2019.2896323
https://doi.org/10.1109/TSMC.2019.2896323
https://doi.org/10.1007/s00500-015-1918-8
https://doi.org/10.1007/s00500-015-1918-8
https://doi.org/10.1109/JSYST.2013.2271537
https://doi.org/10.1109/JSYST.2013.2271537
https://doi.org/10.1007/3-540-36563-X_21
https://doi.org/10.1007/978-3-540-88403-3_5
https://doi.org/10.1007/978-3-540-88403-3_5
https://doi.org/10.1007/s12652-021-03085-0
https://doi.org/10.1007/s12652-021-03085-0
https://doi.org/10.1145/358790.358797
https://doi.org/10.1145/358790.358797
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1109/TSMC.2019.2895123
https://doi.org/10.1109/TSMC.2019.2895123
https://doi.org/10.1109/JIOT.2021.3109314
https://doi.org/10.1109/JIOT.2021.3109314
https://doi.org/10.1145/3403954
https://doi.org/10.1007/s12652-019-01412-0
https://doi.org/10.1007/s12652-019-01412-0
https://doi.org/10.1016/j.comcom.2021.02.002
https://doi.org/10.1016/j.comcom.2021.02.002
https://doi.org/10.1109/ADCOM.2017.00013
https://doi.org/10.1109/ADCOM.2017.00013
https://doi.org/10.1109/TSMC.2018.2884289
https://doi.org/10.1109/TSMC.2017.2752203
https://doi.org/10.1109/TSMC.2017.2752203
https://doi.org/10.1109/TSMC.2019.2896323
https://doi.org/10.1109/TSMC.2019.2896323
https://doi.org/10.1007/s00500-015-1918-8
https://doi.org/10.1007/s00500-015-1918-8
https://doi.org/10.1109/JSYST.2013.2271537
https://doi.org/10.1109/JSYST.2013.2271537
https://doi.org/10.1007/3-540-36563-X_21
https://doi.org/10.1007/3-540-36563-X_21
https://doi.org/10.1007/978-3-540-88403-3_5
https://doi.org/10.1007/978-3-540-88403-3_5
https://doi.org/10.1007/s12652-021-03085-0
https://doi.org/10.1007/s12652-021-03085-0

Efficient incremental hash chain with probabilistic filter-based method to update blockchain light nodes

Научно-технический вестник информационных технологий, механики и оптики, 2022, том 22, № 3
546 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no 3

18. Luo L., Guo D., Ma R.T.B., Rottenstreich O., Luo X. Optimizing
bloom filter: Challenges, solutions, and comparisons. IEEE
Communications Surveys and Tutorials, 2019, vol. 21, no. 2,
pp. 1912–1949. https://doi.org/10.1109/COMST.2018.2889329

19. Suzuki K., Tonien D., Kurosawa K., Toyota K. Birthday paradox for
multi-collisions. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2006, vol. 4296, pp. 29–40. https://doi.
org/10.1007/11927587_5

20. Gilbert H., Handschuh H. Security analysis of SHA-256 and sisters.
Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2004, vol. 3006, pp. 175–193. https://doi.org/10.1007/978-3-540-
24654-1_13

21. Lee D., Park N. Blockchain based privacy preserving multimedia
intelligent video surveillance using secure Merkle tree. Multimedia
Tools and Applications, 2021, vol. 80, no. 26-27, pp. 34517–34534.
https://doi.org/10.1007/s11042-020-08776-y

22. Kiss S.Z., Hosszu É., Tapolcai J., Rónyai L., Rottenstreich O. Bloom
filter with a false positive free zone. IEEE Transactions on Network
and Service Management, 2021, vol. 18, no. 2, pp. 2334–2349. https://
doi.org/10.1109/TNSM.2021.3059075

Authors
Maher A. Maalla — Student, ITMO University, Saint Petersburg,
197101, Russian Federation, https://orcid.org/0000-0002-4806-8608,
maher.malla7@gmail.com
Sergey V. Bezzateev — D. Sc., Associate Professor, Professor, ITMO
University, Saint Petersburg, 197101, Russian Federation; Saint Petersburg
State University of Aerospace Instrumentation, Head of Department, Saint
Petersburg, 190000, Russian Federation, sc 6602425996, https://orcid.
org/0000-0002-0924-6221, bsv@aanet.ru

Received 09.02.2022
Approved after reviewing 24.03.2022
Accepted 15.05.2022

18. Luo L., Guo D., Ma R.T.B., Rottenstreich O., Luo X. Optimizing
bloom filter: Challenges, solutions, and comparisons // IEEE
Communications Surveys and Tutorials. 2019. V. 21. N 2. P. 1912–
1949. https://doi.org/10.1109/COMST.2018.2889329

19. Suzuki K., Tonien D., Kurosawa K., Toyota K. Birthday paradox for
multi-collisions // Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). 2006. V. 4296. P. 29–40. https://doi.
org/10.1007/11927587_5

20. Gilbert H., Handschuh H. Security analysis of SHA-256 and sisters
// Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
2004. V. 3006. P. 175–193. https://doi.org/10.1007/978-3-540-24654-
1_13

21. Lee D., Park N. Blockchain based privacy preserving multimedia
intelligent video surveillance using secure Merkle tree // Multimedia
Tools and Applications. 2021. V. 80. N 26-27. P. 34517–34534.
https://doi.org/10.1007/s11042-020-08776-y

22. Kiss S.Z., Hosszu É., Tapolcai J., Rónyai L., Rottenstreich O. Bloom
filter with a false positive free zone // IEEE Transactions on Network
and Service Management. 2021. V. 18. N 2. P. 2334–2349. https://doi.
org/10.1109/TNSM.2021.3059075

Авторы
Маалла Махер Аднан — студент, Университет ИТМО, Санкт-
Петербург, 197101, Российская Федерация, https://orcid.org/0000-
0002-4806-8608, maher.malla7@gmail.com
Беззатеев Сергей Валентинович — доктор технических наук, до-
цент, профессор, Университет ИТМО, Санкт-Петербург, 197101,
Российская Федерация; заведующий кафедрой, Санкт-Петербургский
государственный университет аэрокосмического приборостроения,
Санкт-Петербург, 190000, Российская Федерация, sc 6602425996,
https://orcid.org/0000-0002-0924-6221, bsv@aanet.ru

Статья поступила в редакцию 09.02.2022
Одобрена после рецензирования 24.03.2022
Принята к печати 15.05.2022

Работа доступна по лицензии
Creative Commons
«Attribution-NonCommercial»

https://doi.org/10.1109/COMST.2018.2889329
https://doi.org/10.1007/11927587_5
https://doi.org/10.1007/11927587_5
https://doi.org/10.1007/978-3-540-24654-1_13
https://doi.org/10.1007/978-3-540-24654-1_13
https://doi.org/10.1007/s11042-020-08776-y
https://doi.org/10.1109/TNSM.2021.3059075
https://doi.org/10.1109/TNSM.2021.3059075
https://orcid.org/0000-0002-4806-8608
mailto:maher.malla7@gmail.com
https://orcid.org/0000-0002-0924-6221
https://orcid.org/0000-0002-0924-6221
mailto:bsv@aanet.ru
https://doi.org/10.1109/COMST.2018.2889329
https://doi.org/10.1007/11927587_5
https://doi.org/10.1007/11927587_5
https://doi.org/10.1007/978-3-540-24654-1_13
https://doi.org/10.1007/978-3-540-24654-1_13
https://doi.org/10.1007/s11042-020-08776-y
https://doi.org/10.1109/TNSM.2021.3059075
https://doi.org/10.1109/TNSM.2021.3059075
https://orcid.org/0000-0002-4806-8608
https://orcid.org/0000-0002-4806-8608
mailto:maher.malla7@gmail.com
https://orcid.org/0000-0002-0924-6221
mailto:bsv@aanet.ru

