
Научно-технический вестник информационных технологий, механики и оптики, 2023, том 23, № 2 
374 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 2

 НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

 март–апрель 2023 Том 23 № 2 http://ntv.ifmo.ru/

 SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS

 March–April 2023 Vol. 23 No 2  http://ntv.ifmo.ru/en/

 ISSN 2226-1494 (print)  ISSN 2500-0373 (online)

март–апрель 2023 Том 23 Номер 2

© Saravanan R., Swaminathan A., Balaji S., 2023

doi: 10.17586/2226-1494-2023-23-2-374-381

An intelligent shell game optimization based energy consumption analytics model 
for smart metering data

Ramalingam Saravanan1, Arulnanthisivam Swaminathan2, Sankaralingam Balaji3
1,3 Sri Manakula Vinayagar Engineering College, Puducherry, 605107, India 
2 Panimalar Engineering College, Chennai, 600123, India 
1 saravanan@smvec.ac.in, https://orcid.org/0000-0003-3503-1133 
2 swamisivam19@gmail.com, https://orcid.org/0000-0001-7672-1339 
3 balaji@smvec.ac.in, https://orcid.org/0000-0002-9013-9801

Abstract
Smart metering is a hot research topic and has gained significant attention since the electromechanical metering is not 
reliable and requires more energy and time. All the existing methods are focused only on how to deal with data rather 
than how to do efficiently.  Prediction of electricity consumption is essential to gain intelligence to the smart gird. 
Precise electricity prediction allows a service provided in resource planning and also controlling actions for the demand 
and supply balancing. The users are beneficial from the smart metering solution by effective interpretation of their 
energy utilization, and labelling them to efficiently handle the utilization cost. With this motivation, the paper presents 
intelligent energy consumption analytics using smart metering data (ECA-SMD) model to determine the utilization of 
energy. The presented ECA-SMD model involves three major processes namely data pre-processing, feature extraction, 
classification, and parameter optimization. The presented ECA-SMD model uses Extreme Learning Machine (ELM) 
based classification to determine the optimum class labels. Besides, shell game optimization (SGO) algorithm is applied 
for tuning the parameters involved in the ELM and boosts the classification efficiency. The efficacy of the ECA-SMD 
model is validated using an extensive set of smart metering data and the results are investigated based on accuracy and 
mean square error (MSE). The proposed model exhibited supremacy with the maximum accuracy of 65.917 % and 
minimum MSE of 0.096.
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Аннотация
Интеллектуальные измерения привлекают к себе все большое внимание из-за ненадежности электромеханических 
измерений, больших затрат труда и времени. Существующие методы прогнозирования сосредоточены на 
работе с данными и не уделяют должного внимания полученным результатам. Точное прогнозирование 
потребления электроэнергии позволяет предоставлять услуги по планированию ресурсов, контролю 
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действия по балансированию спроса и предложения. Пользователи получают выгоду при применении 
интеллектуального учета за счет эффективной интерпретации результатов использования энергии и благодаря 
экономичному) управлению затратами на электроэнергию. В работе представлена интеллектуальная аналитика 
энергопотребления с применением модели данных интеллектуального учета ECA-SMD для определения 
использования энергии. Модель включает предварительную обработку данных, извлечение признаков, 
классификацию и оптимизацию параметров. Использована классификация на основе машин экстремального 
обучения (Extreme Learning Machine, ELM) для определения оптимальных меток классов. Применен алгоритм 
оптимизации Shell Game Optimization для настройки параметров, участвующих в ELM и повышения 
эффективности классификации. Работоспособность модели ECA-SMD проверена с использованием обширного 
набора данных интеллектуальных измерений. Предложенная модель показала максимальную точность 65,9 % 
и среднеквадратичное отклонение 0,096.
Ключевые слова
потребление электроэнергии, прогнозирующая модель, анализ данных, интеллектуальный учет, машинное 
обучение
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Introduction

Conventional power grids are being replaced by smart 
grids which include the use of solar energy and wind 
energy, and the smart metring is essential to collect the 
data efficiently. In previous years, smart meters have been 
rapidly utilized all over the world. At the end of 2018, 
nearby 86 (UK) and 11 (US) million smart meters have 
been installed by small and large suppliers. The major aim 
of smart metering in residential sectors is to inspire the 
user for consuming lesser energy with increased awareness 
regarding their consumption level [1]. The smart meter 
provides data on cost and sum of energy utilization in 
real world for both consumers and suppliers. This data 
with incentive programs and demand response will assist 
them to reduce their energy utilization on peak times and 
schedule its appliances based on electricity prices [2]. High 
resolution data created by smart meters, alternatively, give 
suppliers various managing tasks like power loss detection 
and power quality monitoring. Furthermore, it unlocks 
several doors of chances in electricity load analyses like 
load predicting with higher accurateness at low aggregation 
levels [3, 4]. The important benefits of the smart metering 
are automated meter reading, dynamic pricing updates, and 
early alert of blackouts, efficient energy usage and savings. 
The load control of smart meters helps the consumers and 
distributors to disable the meters when the price gets higher 
which saves the energy when there is scarcity. The data 
generated from the smart meters are helpful in market 
demands, abruption of changes, load forecasting through 
data analytics. 

Electrical load predicting is the forecast of the load 
demand that an electricity user would have later [5]. Load 
prediction assists suppliers to balance demand and supply 
also in ensuring the consistency of power grids during 
power insufficiency. Load predictions are also significant 
to electricity traders for balancing their electricity sales and 
purchase [6]. Load predicting is implemented in extensive 
time-horizon aims at distinct targets: short term load 
prediction (seconds to one day in advance) for adjusting 
demand and supply; medium term load forecast (one day to 
one year in advance) for planning maintenance and outage; 
and long term load prediction (over a year in advance) for 

planning the growth of power framework. The predicting 
process becomes very difficult for low aggregation levels, 
for example at building level, since several fluctuating 
factors affect a building energy consumption with differing 
degrees, such as building properties, weather variables, 
Ventilating, Heating, and Air Conditioning (HAVC) 
services and utilization behavior of occupiers [7, 8]. 
Additionally, several researchers have profited from smart 
metering information for developing innovative modules to 
load predicting at separate building levels. The approaches 
for forecasting building energy consumption are commonly 
categorized into 2 classes: data driven and engineering 
(physical) methods. Engineering approach utilizes scientific 
equations for presenting the physical modules and thermal 
efficacy of buildings. Nowever, they require higher details 
regarding distinct variables of the buildings that aren’t often 
presented. Furthermore, a higher level of skill is needed 
for performing elaborate and expensive computations. 
Alternatively, data driven methods does not require this 
complete information regarding the inspired building and 
rather learns from historical/real world data. This approach 
is categorized into 2 classes: Artificial Intellegence (AI) 
based and statistical methods [9, 10]. 

Statistical approaches utilize historical data as a goal to 
correlate energy consumption with significant parameters 
as input. Thus, a large number of historical data with higher 
quality performs a major part in the efficiency of statistical 
modules. Conventional linear statistical modules, like 
Conditional demand analysis, Autoregressive Integrated 
Moving Average, Gaussian mixture models (GMM), Auto 
Autoregressive Moving Average, and Regression models, 
have endured the standard for time sequence forecast 
with an extensive utilization in several applications [11]. 
Though it is easier for utilizing statistical methods, the 
fundamental assumptions of this module are depending 
upon time sequence that is deliberated linear and thus 
follows a particularly known distribution of statistics. 
Several Machine Learning (ML) modules were established 
to conquer these restrictions. The modules are depending 
upon Support Vector Machines (SVM), and Classification 
and Regression Trees, which are between the effective ML 
methods utilized in time sequence predicting and energy 
application.
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In previous years, several scientists have examined the 
application of AI based methods in predicting challenges. 
Amongst AI based methods, Artificial Neural Networks 
(ANNs) with distinct structures have been extensively 
utilized in the load predicting field [12]. ANN is equivalent 
to statistical approaches that utilize historical data for 
building a module. However, hidden layer structure and 
learning capability offer numerous benefits on statistical 
and traditional ML methods for predicting time sequence. 
They are deliberated data driven and self-adaptive 
approaches that could take subtle and functional patterns 
via a trained procedure on historical records of data, when 
the fundamental relationships among input and output 
parameters are unknown/complex. However, the neural 
networks with shallow structures have the drawbacks of 
considering entire inputs and outputs that are autonomous 
of one another, while handling consecutive data [13, 14].

This paper presents intelligent Energy Consumption 
Analytics using Smart Metering Data (ECA-SMD) model 
to determine the utilization of energy. The presented ECA-
SMD model involves three major processes, namely, data 
pre-processing, feature extraction, classification, and 
parameter optimization. The presented ECA-SMD model 
uses Extreme Learning Machine (ELM) based classification 
to determine the optimum class labels. Besides, Shell 
Game Optimization (SGO) algorithm is applied for tuning 
the parameters involved in the ELM and it boosts the 
classification efficiency. The efficacy of the ECA-SMD 
model is validated using an extensive set of smart metering 
data and the results are investigated based on accuracy and 
Mean Square Error (MSE). 

The Proposed ECA-SMD Model

The ECA-SMD model encompasses different processes 
as shown in Fig. 1, such as data pre-processing, feature 
extraction, ELM based prediction, and SGO based 
parameter optimization. Initially, the smart metering data is 
pre-processed to enhance the quality of the data. Followed 
by, the features in the pre-processed data are extracted and 
are then fed into the ELM model to predict the electricity 
utilization. In order to further improve the predictive 

performance of the ELM model, the SGO algorithm is 
applied to optimally alter the parameters involved in the 
ELM model.

Data Pre-processing
The pre-processing phase is the early procedure that is 

assumed to be major procedure of the energy consumption 
analyses where the dataset is loaded. The dataset used in 
the work is smart meter dataset acquired from Kaggle1 
which contains the readings of 5567 households. The 
dataset contains hourly household energy consumption 
that is expected and is kept in the local database to compare 
the real measured data. The Data pre-processing phase is 
consisting of several procedures, such as data integration, 
data transformation, data cleaning, and data reduction. Data 
cleansing is a procedure of finding the missing variables 
and it fills them with precise values. The processed data 
is summarized and executed standardization function for 
reducing the redundant values in the datasets. The data 
kept in the datasets should be dependent on one another 
with essential logic between these data. With the removal 
of redundant data, the data reduction procedure is executed 
thus to raise the speediness of the data process while 
relating the trained dataset with the test data.

Feature Extraction
It is the next procedure of defining the accuracy of 

matching the test data to the trained data. The measured 
value of voltage, global active reactive powers, power 
intensity was assumed to be a test value and is related to 
standard deviation. The low standard deviation produces 
higher level of accuracy in the feature extraction stage. 
The time sequence data of the reactive powers and global 
active have been related to the extracted features. The 
relation coefficient C(t) between the test and trained data 
is defined by

 C(t) = , (1)

where xn is the training data and xn is testing data.
Eq. (1) represents that the relation coefficient produces 

the corresponding factor relating the test and trained values 
of global reactive power, power intensity global active 
power. The Standard Deviation (SD)  for the test and 
trained values has been as

 SD(σ) = , (2)

where xi is a value in the data set.
Eq. (2) denotes the scientific form of defining the SD 

of the prediction value, and it is based on overall electrical 
appliances in the test residential building (N) and mean 
of electrical appliances in the target residential building 
(µ). The approach used in the feature extraction process 
is Pearson correlation coefficient-based feature selection 
method. With the help of ranking function, the features 

1 Smart meter data from London area. Available at: https://
www.kaggle.com/datasets/jeanmidev/smart-meters-in-london 
(accessed 18.10.2022).Fig. 1. Working process of ECA-SMD model

https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london
https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london
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are ranked based on the correlation among the features. 
Then the optimal features are selected by eliminating the 
irrelevant features in the dataset based on the rank obtained 
by the features. The selection of the relevant feature 
purely depends on the heat consumption and the outside 
temperatures of the current and previous 21 days. 

ELM based Prediction
In order to perform prediction, mathematical model 

that accepts input and output should be modeled for energy 
consumption. It is necessary to study the relationship 
between the input parameters that affect consumption 
and output values providing the consumption. Next to the 
feature extraction process, the Extreme Learning Machine 
(ELM) model is applied to determine the predictive value 
of the input data. Huang et al. [15] present a novel Neural 
Network (NN) method named ELM. The ELM topology is 
a generalized Single hidden Layer Feedforward Network 
(SLFN) where the input layer weight is set arbitrarily, and 
the hidden layer weight should be changed. Therefore, 
in computation terms, ELM is a light weight method. As 
the trained method isn’t a gradient descent-based one, it 
enables the utilization of diverse activation functions like 
sinusoid, sigmoid, Gaussian, logistic, identity, Rectifier 
Linear Unit, Radial Basis Function between another’s.

They assumed a regular SLFN with m output node, n 
input node, and L hidden node. Every hidden node has a 
similar activation function h. They assume a time sequence 
{xt}t∈ℤ and, moreover, N random pairs (xj, tj), whereas

 xj = [xj,1, xj,2, …, xj,n]T: = [xj, xj+1, …, xj+n–1]T ∈ ℝn 

denotes input vector and where the equivalent output 
targeted vector tj for j = 1, …, N is denoted as tj = 
= [tj,1, tj,m]T ∈ ℝm and also the scalar output of i-th hidden 
node is denoted as: 

 h(wixj + bi) ∈ ℝ, i = 1, …, L, j = 1, …, N. (3)

Eq. (3) denotes the hidden node L, where wi = [wi,1, …, 
wi,n]T ∈ ℝn denotes weight vector related to the connection 
among n input nodes of input layer and i-th hidden node 
with bi as bias of the hidden node that is: 

 wi,v = weight associated to the connection between  
 the v-th input layer node and i-th inner layer node. (4)

Eq. (4) denotes weight vector w, where v = 1, 2, …, n 
and i = 1, …, L. The k-th element of output of the SLFN 
for input xj is assumed as [16]:

 oμ(xj) = ∑
L

i=1
βi,μh(wixj + bi), (5)

where μ = 1, …, m, j = 1, …, N, bi ∈ ℝ indicates bias of 
i-th hidden node, and

 βi,μ = weight associated to the connection between  
 the i-th input layer node and μ-th inner layer node. (6)

The output of j-th input vector by the structure of ELM 
module denoted in eq. (5) is written in matrix form and it 
is represented as:

 
 o1(x1) … om(x1)

   
 o1(xN) … om(xN)

O≡O(xj)

 = 

 = 

H≡H(wi,xj,bi)

 h(w1|x1 + b1) … h(wLx1 + bL)

   
 h(w1|xN + b1)  h(wLxN + bL)

 × (7)

 × 

 β1,1 … β1,m

   
 βL,1 … βL,m

B

.

The matrix H represents hidden layer output matrix 
of the NN (as shown in eq. (7)), matrix B is explained 
in eq. (7) also. For training, SLFN should detect, for 
a presented set of vectors x1, …, xN, the certain vector 
weights wi = = [w1,i, …, wn,i]T and βμ = [β1,μ, …, βL,μ]T. 
The scalar bias bi, resolves the succeeding minimization 
problem:

 min
wi,biβi,μ

||HB – T||2 =

 = min
wi,biβi,μ

 ∑
m

μ=1
∑
N

j=1
( ∑

L

i=1
(βi,μh(wixj + bi) – ti,μ)2, (8)

where ||.|| denotes typical Frobenius matrix norm,  
T = [ti,μ]N×m is targeted matrix. Afterward, the variables 
wi, βi,μ and bi, that mentioned in (8), are established in the 
trained stage, they remain fixed for entire run of new vectors 
xj. The succeeding results ensure that in the case L = N  
the problem (8) is precisely resolved “with likelihood one”.

Parameter Optimization
Finally, the parameters involved in the ELM model 

are optimally selected using the SGO algorithm in order 
to improve the efficiency of the ELM model. The shell 
game is inspired for inventing a novel optimization 
method named SGO. Thus, the succeeding assumptions 
are deliberated:
— in this game, an individual is deliberated as game 

operator;
— the 3 shells and 1 ball are presented to the operator;
— every player has only 2 chances for guessing the 

accurate shell.
It can be mathematically defined as follows. Here, a 

group of N individuals is considered as the game player 
[17]. In equation below, the location ‘d’ of player ‘I’ is 
given by xi

d.

 Xi = (xi
1, …, xi

d, …, xi
n). (9)

In the eq. (9), Xi denotes arbitrary value for problem 
parameter. Depending upon Xi, the value of Fitness 
Function (FF) is calculated for every player.

Once estimating the FF values for every player, the 
game operators select 3 shells in which all the shells are 
interrelated to the location of an optimum player and 2 
other shells are selected arbitrarily using 
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 gameʼs operator: 
shell1 = ball = Xbest
shell2 = Xk1

shell3 = Xk2

, (10)

where, Xbest denotes location of minimum (in minimization 
problem) or maximum (in maximization problem) of 
fitness; Xk1

 and Xk2
 indicate position of 2 members of the 

population; k1 and k2 denote arbitrary numbers among 1 to 
N that is selected arbitrarily. Once estimating the FF and 
finding the shell for every player, accuracy and intelligence 
of the player must be calculated in this phase. Every player 
guesses the shell depending on whether each player is 
determined based on fitness accuracy and intelligence 
normalized value using.

 AIi = , (11)

where AIi denotes accuracy and intelligence of player i and 
Xworst represents location of minimum (in maximization 
problem) or maximum (in minimization problem) of fitness.

Here, the player is prepared for guessing the ball. 
Assuming that the game is played with 3 shells and every 
player has 2 opportunities, there are 3 states of guess for 
every player. In initial state, the initial guess might be right 
and the position of the ball would be identified. In next 
state, the player later an incorrect guess in the initial choice 
might guess the ball position in the next time. Lastly, in 
the third state, both guesses of players might be incorrect 
and therefore the player was ineffective to identify the ball 
position. The guess vector detailed by Gv is inspired using 
for every player the following equation:

 Gv(x) = 

state1: [1 0 0], at first

state2: [0.5 0.5 0]
0.5 0 0.5

, at second

state3: [0 0.5 0.5], else

. (12)

The probability of choosing one of the states for shell 
selection is simulated by

 state = 
state1: ifAIi > rg1
state2: ifAIi > rg2
state3 = else

 , (13)

where rg1 denotes probability of right guess at the initial 
choice and rg2 represents probability of accurate guess at 
the next time. Lastly, Xi vector that is considered as the 
position of every member of population is upgraded based 
on equations

 dxi,ball
d  = r1(ball – xi

d)state(1,1) (14)

dxi,shell2
d  = r2(shell2d – xi

d)sign(fiti – fitshell2)state(1,2) (15)

dxi,shell3
d  = r3(shell3d – xi

d)sign(fiti – fitshell3)state(1,3) (16)

  xi
d = xi

d + dxi,ball
d  + dxi,shell2

d  + dxi,shell3
d , (17)

where ri indicates arbitrary value in the range of zero and 
one, dxi,ball

d , dxi,shell2
d , and dxi,shell3

d  denotes displacement of 
dimension ‘d’ of player ‘i’ according to shell1, shell2, and 
shell3. 

The steps of SGO is generalized by:
Step 1: Arbitrary creation of early population by eq. (9)
Step 2: Evaluating the fitness value of agents
Step 3: Choice of i-th member
Step 4: Choosing 3 shells by eq. (10)
Step 5: Estimation of accuracy and intelligence (AI) 

by eq. (11)
Step 6: Determining the state of guess by eqs. (12) and 

(13)
Step 7: Choice of d-th dimension of i-th member
Step 8: Evaluating dxi,ball

d , dxi,shell2
d , and dxi,shell3

d  using 
eqs. (14)–(16)

Step 9: Upgrading position of d-th dimension of i-th 
member by eq. (17)

Step 10: When each dimension of i-th member are 
upgraded, go to Step 11, otherwise return Step 7

Step 11: When each member is upgraded, go to Step 12, 
otherwise return Step 3 

Step 12: When the end criteria are recognized, go to 
Step 13, otherwise return Step 2

Step 13: Print the optimum solution.

Performance Validation

This section validates the performance of the ECA-
SMD model with other existing methods such as ANN 
and SVM. The results are examined in terms of MSE 
and accuracy. For improved predictive results, the value 
of accuracy should be maximum and MSE value should 
be minimum. Table 1 provides the comparative results 
analysis of the ECA-SMD model in terms of accuracy and 
MSE. The dataset is processed and aggregated in to hourly 
data. We used 3 months data of households for prediction. 
The forecasting is done using the proposed model and the 
performance is evaluated by comparing the proposed model 
with other models. The performance metrics used in the 
work is MSE, and its accuracy is shown in Table 1. 

An accuracy analysis of the ECA-SMD model is made 
with the existing methods in Fig. 2. The figure showcased 
that the ANN model had shown poor performance and 
resulted in a lower accuracy value. At the same time, the 
SVM model demonstrated slightly enhanced outcome over 
the ANN but not higher than the proposed ECA-SMD 
model. For instance, at T1 Hour, the proposed ECA-SMD 
model has attained effective outcome with higher accuracy 
of 73 %, whereas the ANN and SVM models have achieved 
lower accuracy of 67 % and 70 %, respectively. In addition, 
at T4 Hour, the proposed ECA-SMD model has attained 
effective outcome with higher accuracy of 71 %, whereas 
the ANN and SVM models have achieved lower accuracy 
of 69 % and 57 %, respectively. Also, at T8 Hour, the 
proposed ECA-SMD model has attained effective outcome 
with higher accuracy of 71 %, whereas the ANN and SVM 
models have achieved lower accuracy of 66 % and 61 %, 
respectively. Additionally, at T12 Hour, the proposed ECA-
SMD model has attained effective outcome with higher 
accuracy of 59 %, whereas the ANN and SVM models have 
achieved lower accuracy of 57 % and 52 %, respectively. 
Besides, at T16 Hour, the proposed ECA-SMD model has 
attained effective outcome with higher accuracy of 63 %, 
whereas the ANN and SVM models have achieved lower 
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accuracy of 62 % and 60 %, respectively. Moreover, at 
T20 Hour, the proposed ECA-SMD model has attained 
effective outcome with higher accuracy of 65 %, whereas 
the ANN and SVM models have achieved lower accuracy 
of 59 % and 62 %, respectively. Furthermore, at T24 Hour, 
the proposed ECA-SMD model has attained effective 
outcome with higher accuracy of 65 %, whereas the ANN 

and SVM models have achieved lower accuracy of 61 % 
and 61 %, respectively.

A brief MSE analysis of the ECA-SMD model takes 
place with the existing techniques in Fig. 3. The figure 
depicted that the ANN and SVM models have failed to 
outperform the proposed ECA-SMD model which has 
achieved least MSE values. For instance, at T1 Hour, 

Table 1. Result Analysis of Existing with Proposed ECA-SMD Model in terms of MSE and Accuracy

Hour
ANN SVM ECA-SMD

Accuracy, % MSE Accuracy, % MSE Accuracy, % MSE

T1 67 0.10 70 0.08 73 0.06

T2 59 0.11 59 0.12 62 0.10

T3 66 0.10 58 0.12 71 0.09

T4 69 0.09 57 0.12 71 0.08

T5 66 0.10 58 0.12 68 0.09

T6 63 0.10 58 0.11 68 0.09

T7 60 0.11 59 0.11 61 0.10

T8 66 0.10 61 0.11 71 0.09

T9 66 0.10 60 0.12 67 0.10

T10 61 0.11 59 0.12 64 0.10

T11 62 0.11 57 0.12 66 0.11

T12 57 0.12 52 0.12 59 0.10

T13 59 0.12 55 0.12 62 0.12

T14 57 0.12 60 0.11 65 0.10

T15 61 0.12 56 0.13 63 0.10

T16 62 0.12 60 0.12 63 0.10

T17 60 0.11 59 0.12 65 0.10

T18 67 0.10 60 0.11 68 0.09

T19 62 0.12 68 0.11 70 0.11

T20 59 0.12 62 0.11 65 0.11

T21 66 0.11 63 0.10 68 0.09

T22 58 0.12 61 0.10 65 0.08

T23 57 0.12 60 0.11 62 0.10

T24 61 0.11 61 0.13 65 0.10

Avg. 62.130 0.110 59.708 0.114 65.917 0.096

Fig. 2. Result analysis of ECA-SMD model in terms of 
accuracy

Fig. 3. Result analysis of ECA-SMD model interms of MSE
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a minimal MSE of 0.06 has been accomplished by the 
ECA-SMD model, whereas a maximum MSE of 0.10 and 
0.08 have been gained by the ANN and SVM models. In 
the meantime, at T4 Hour, a minimal MSE of 0.08 has 
been accomplished by the ECA-SMD model, whereas 
a maximum MSE of 0.09 and 0.12 have been gained by 
the ANN and SVM models. At the same time, at T8 Hour, 
a minimal MSE of 0.09 has been accomplished by the 
ECA-SMD model, whereas a maximum MSE of 0.10 and 
0.11 have been gained by the ANN and SVM models.  
Meanwhile, at T12 Hour, a minimal MSE of 0.10 has 
been accomplished by the ECA-SMD model, whereas 
a maximum MSE of 0.12 and 0.12 have been gained by 
the ANN and SVM models.  In line with, at T16 Hour, 
a minimal MSE of 0.10 has been accomplished by the 
ECA-SMD model, whereas a maximum MSE of 0.12 and 
0.12 have been gained by the ANN and SVM models.  
Along with that, at T20 Hour, a minimal MSE of 0.11 has 
been accomplished by the ECA-SMD model, whereas a 
maximum MSE of 0.12 and 0.11 have been gained by the 
ANN and SVM models. Simultaneously, at T24 Hour, a 
minimal MSE of 0.10 has been accomplished by the ECA-
SMD model, whereas a maximum MSE of 0.11 and 0.13 
have been gained by the ANN and SVM models.

Fig. 4, a portrays the average accuracy analysis of the 
ECA-SMD model with the existing ANN and SVM models. 
From the figure, it is depicted that the SVM model has 
achieved least performance over the other methods with the 
reduced average accuracy of 59.708 %, whereas the ANN 
model has demonstrated slightly enhanced performance 
with an average accuracy of 62.13 %. But the proposed 

ECA-SMD model has resulted in a maximum average 
accuracy of 65.917 %.

Fig. 4, b depicts the average MSE analysis of the ECA-
SMD model with the existing ANN and SVM models. 
From the figure, it can be seen that the SVM model has 
realized minimum performance over the other methods 
with the increased average MSE of 0.114, whereas the 
ANN model has established somewhat improved outcomes 
with an average MSE of 0.110. However, the proposed 
ECA-SMD model has offered superior performance with 
the lowest average MSE of 0.096.

Conclusion

The ECA-SMD model encompasses different processes, 
such as data pre-processing, feature extraction, ELM 
based prediction, and SGO based parameter optimization. 
Initially, the smart metering data is pre-processed to 
enhance the quality of the data. Followed by, the features 
in the pre-processed data are extracted and are then fed 
into the ELM model to predict the electricity utilization. In 
order to further improve the predictive performance of the 
ELM model, the SSO algorithm is applied to optimally alter 
the parameters involved in the ELM model. The efficacy 
of the ECA-SMD model is validated using an extensive 
set of smart metering data, and the results are investigated 
based on accuracy and MSE. The proposed model exhibited 
supremacy with a maximum accuracy of 65.917 % and 
minimum MSE of 0.096. In future, the proposed ECA-
SMD model can be extended to the utilization of deep 
learning architectures.

Fig. 4. Average accuracy analysis (a) and MSE (b) of ECA-SMD model
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