HAYYHO-TEXHUYECKMI BECTHUK MHOOPMALIMOHHBIX TEXHOOM I, MEXAHUKI 1 OMTUKN

) vionb-asryct 2023 Tom 23 N2 4 http://ntvifmo.ru/ WAvuHO-TEXHMYECKMEM BECTHMK
IIITMO SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS “Hm“pMA““““HMX IEXH“I“"““' MEXAH“K“ “ m"“m
July-August 2023 Vol. 23 No 4 http://ntv.ifmo.ru/en/
ISSN 2226-1494 (print) ISSN 2500-0373 (online)

doi: 10.17586/2226-1494-2023-23-4-750-756

Verification of event-driven software systems using the specification language
of cooperating automata objects
Irina V. Afanasieval, Fedor A. Novikov2, Ludmila N. Fedorchenko3™

1 Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS), Nizhny Arkhyz, 369167,
Russian Federation

2 Peter the Great St. Petersburg Polytechnic University (SPbPU), Saint Petersburg, 195251, Russian Federation

2 Alferov Academic University, Saint Peterburg, 194021, Russian Federation

3 St. Petersburg Federal Research Center of the Russian Academy of Sciences, Saint Petersburg, 199178, Russian
Federation

1 riv615@gmail.com, https://orcid.org/0000-0003-4225-4124
2 fedornovikov5 1 @gmail.com, https://orcid.org/0000-0003-4450-0173
3 Inf@iias.spb.su™?, https://orcid.org/0000-0002-4008-9316

Abstract

The CIAO (Cooperative Interaction Automata Objects) specification language is intended to describe the behavior of
distributed and parallel event-driven systems. This class of systems includes various software and hardware systems
for control, monitoring, data collection, and processing. The ability to verify compliance with requirements is desirable
competitive advantage for such systems. The CIAO language extends the concept of state machines of the UML
(Unified Modeling Language) with the possibility of cooperative interaction of several automata through strictly
defined interfaces. The cooperative interaction of automata objects is defined by a link scheme that defines how the
provided and required interfaces of different automata objects are connected. Thus, the behavior of the system as a
whole could be described as a set of execution protocols, each of which is a sequence of interface calls, possibly with
guard conditions. We represent a set of protocols using a semantic graph in which all possible paths from the initial
nodes to the final nodes define sequences of interface method calls. Because the interfaces are strictly defined in advance
by the connection scheme, it is possible to construct a semantic graph automatically according to a given system of
interacting automaton objects. To verify the system behavior, one only has to check if each path in the semantic graph
does satisfy the requirements. System requirements are formally described using conditional regular expressions that
define patterns of acceptable and forbidden behavior. This article proposes methods and algorithms that allow you to
check the compliance of programs in the CIAO language with the requirements automatically and, thereby, check the
semantics of the developed program. The proposed method narrows the specification formalism to the class of regular
languages and the programming language to a language with a simple and predefined structure. In many practical cases,
this is sufficient for effective verification.

Keywords

verification, event-driven programs, critical system development, regular expressions, elevator control system
Acknowledgments

The work of Irina Afanasieva was carried out within the framework of the SAO RAS State Assignment approved by the
Ministry of Science and Higher Education of the Russian Federation no. 121092300060-6.

For citation: Afanasieva I.V., Novikov F.A., Fedorchenko L.N. Verification of event-driven software systems using the
specification language of cooperating automata objects. Scientific and Technical Journal of Information Technologies,
Mechanics and Optics, 2023, vol. 23, no. 4, pp. 750-756. doi: 10.17586/2226-1494-2023-23-4-750-756

© Afanasieva I.V., Novikov F.A., Fedorchenko L.N., 2023

Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MeXaHKn 1 ontukn, 2023, Tom 23, N2 4
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 4

750

http://ntv.ifmo.ru/
http://ntv.ifmo.ru/en/
mailto:riv615@gmail.com
https://orcid.org/0000-0003-4225-4124
mailto:fedornovikov51@gmail.com
https://orcid.org/0000-0003-4450-0173
mailto:lnf@iias.spb.su
https://orcid.org/0000-0002-4008-9316

|.V. Afanasieva, F.A. Novikov, L.N. Fedorchenko

VK 004.415.52, 004.434
Bepuduxanus coObITHIHHO-YNIPABISEMbIX IPOrPAMMHBIX CHCTEM
€ UCMOJIb30BAHUEM SI3bIKA cieM(PUKANNM B3aUMOIeHCTBYIOIIUX
aBTOMATHBLIX 00bEKTOB

Hpuna Bukroposna Adanacnenal, ®emop Anexcanaposuy Hopukos2,
Jronvunina Huxonaesna ®enopuenxo’™

! Cnienmanpbnas acrpousnueckas odcepparopus Poccuiickoii akagemun Hayk, Hukauit Apxeis, 369167, Poccuiickas
Denepanus

2 Canxr-IlerepOyprekuii nonurexuudecknii ynusepeutet Ilerpa Bemukoro, Cankr-Iletepbypr, 195251, Poccuiickas
®Denepanns

2 Canxkr-IleTepOyprekuii HAMOHAIBHBIN UCCIIEI0BATENBCKNI AKaieMuueckuil yausepeutet nmenn KU, Andéposa
Poccuiickoit akagemun Hayk, Cankr-IlerepOypr, 194021, Poccniickas ®enepanns

3 Canxr-Iletepbyprekuit DeepaibHblil HCCIEI0BATENbCKHN IIeHTp Poccuiickoit akanemun Hayk, Cankt-IletepOypr,
199178, Poccuiickas denepanus

1 riv615@gmail.com, https://orcid.org/0000-0003-4225-4124
2 fedornovikov5 1 @gmail.com, https://orcid.org/0000-0003-4450-0173
3 Inf@iias.spb.su™?, https://orcid.org/0000-0002-4008-9316

AHHOTAIUA

Beenenne. fI3bik cnennduxamun Cooperative Interaction Automata Objects (CIAO) npenHa3HadeH JUisi ONHACAHUS
TMOBEJACHUS pACIIPEACIICHHBIX U NTAPAJIUICJIbHBIX CUCTEM, YIIPABJIAEMbIX COGBITI/ISIMH. K OTOMY KJIACCy CUCTEM OTHOCATCA
Ppa3IuYHBIE MPOTPAMMHO-AMIAPaTHBIE KOMITIIEKCHI YIPaBIeH!s, KOHTPOJIA, cOopa 1 00paboTKH AaHHBIX. BO3MOXXHOCTH
aBTOMAaTHYECKOH MPOBEPKH COOTBETCTBHSA TPEOOBAHMAM SBISETCS JKENAaTeIbHBIM KOHKYPEHTHBIM IMPEHMYIIECTBOM
COOBITHIHO-YTIPABISIEMBIX POrpaMMHBIX crcTeM. 1361k CIAO pacmmpsieT KOHIENIHIo KoHedHbIX aBroMaTtoB (Unified
Modeling Language, UML) BO3MOXHOCTBIO KOONEPATHBHOTO B3aNMOAEHCTBHSI HECKOJIBKIX aBTOMATOB Uepe3 CTPOTo
onpenenenHsle nHTEepdeiicel. Kooneparnsaoe B3auMoeiicTBUEe aBTOMATHBIX 0OBEKTOB ONPEAEISeTCs CXEMOH CBA3H,
KOTOpast CBSI3bIBACT NPEAOCTABICHHBIE M TpeOyeMble HHTep(EHChl pa3INUHbIX aBTOMATHBIX 00beKTOB. TakuM 00pazoM,
HOBEJICHUE CUCTEMBI B 11€JIOM MOJKHO OIUCATh KaK HA0OP MPOTOKOJIOB BBINOIHEHUS, KaX bl U3 KOTOPBIX IIPECTABISIET
€000 IOCIIe0BaTENILHOCTD BBI30BOB MHTEpdelica, BOBMOXKHO CO CTOpOXKeBbIMU ycioBusiMu. Metoa. [Ipencrasien
Ha0Op MPOTOKOJIOB € MOMOIIBI0 CEMaHTHYECKOro rpada, B KOTOPOM BCE BO3MOXKHBIC ITyTH OT HaYaJIbHBIX K KOHCYHBIM
y3J71aM OTIPE/IENICHBI TTOCIIEI0BATENbHOCTRIO BEI30BOB METO/IOB HHTepdetica. braromapst Tomy, uto nHTepdeiice! 3apaHee
CTPOTO OTIPEAETCHBI CXEMOI CBSI3H, BO3ZMOKHO aBTOMAaTHIECKO€ MOCTPOCHNE CEMAHTHIECKOTo rpada 1o 3aaaHHoit
CHCTEME B3aHMOEHCTBYIOIINX aBTOMATHBIX O0BEKTOB. JJIsT MPOBEPKH ITOBEAEHHST CHCTEMBI IOCTaTOYHO yOeIUThCs,
YTO KaXKABIH MyTh B CEMaHTUYECKOM Tpade ymoBieTBopsieT TpeboBaHUsIM. CUCTeMHBIe TpeboBaHHs (HOPMATBLHO
OIHCAHBI C TOMOIIBIO YCJIOBHBIX PETYIAPHBIX BBIPAKEHUH, OTIPEIEIISIONINX MA0I0Hb! JOIyCTUMOTO U 3allpEeIeHHOTO
nosezieHus. OCHOBHBIE Pe3yabTaThbl. [IpeIoxKeHbl METOIbI U aJITOPHTMBI, HO3BOJISIOIIME ABTOMATHYECKH IIPOBEPUTD
coorBercTBHe nporpamm Ha s3bike CIAO 3agaHHbIM TpeOoBaHusM. O6cyxaenne. Pa3paboTaHHbIH METO CyxKaeT
(bopmanu3M Juis 3aaHus crieluUKALUK 10 KIacca PeryiIsapHbIX S3bIKOB, a S3bIK MPOrPaMMHUPOBAHUS — JI0 SI3bIKA C
MIPOCTOH U MPEAOTNPEICIICHHON CTPYKTYpOil. BO MHOTMX MPaKTUYEeCKHX CITydasix 3TOr0 AOCTATOYHO A 3P PEeKTUBHOM
BepHu(UKAIHN.

KiioueBble cj10Ba
BepUQHKaIHs, COOBITHITHO-OPUEHTUPOBAHHBIC TPOTPAMMBI, Pa3pad0TKa KPUTHIECKUX CUCTEM, PETYIISPHBIC BEIPAKCHHS,
cucTeMa yIrpaBieHus JTudTom

Baaronapuoctu

Pa6ora Upunsr AdanacseBoil BEIIIONIHEHA B paMKaxX rocylapcTBeHHOTo 3aganus CrennansHol acTpoduindeckoit
obcepsaropun PAH Ne 121092300060-6, yTBepskaeHHOr0 MHUHHUCTEPCTBOM HAyKHU U BBICIIEr0 00pa3oBaHus Poccuiickoit
ODenepanuu.

Ccplaka aus nutupoBanusi: Adanacsena 1.B., HosukoB ®@.A., ®denopuenko JI.H. Bepudukamnus cobwiTuiino-
YHpaBJISAEMbBIX HPOIrpaMMHBIX CUCTEM C HMCIOJIb30BAHUEM sA3bIKA cneuu(bm(aunn B3aMMOﬂeﬁCTBymmHX ABTOMATHBIX
00bexToB // HaydHO-TEeXHUUSCKHI BECTHHK MH(POPMALMOHHBIX TEXHOIOIni, Mexanuku u ontuku. 2023. T. 23, Ne 4.
C. 750-756 (na anrn. s3.). doi: 10.17586/2226-1494-2023-23-4-750-756

Introduction

Event-driven programs, otherwise called discrete
reactive systems [1, 2], are often found in the tasks of
control, monitoring, data collection, and processing. An
event-driven system responds to emerging events (stimuli)
by performing certain actions (reactions). Such systems
are often classified as critical systems [3, 4] for which the
formulation of requirements and verification of compliance
with the requirements are nontrivial tasks. Ordinary verbal
formulations and selective testing are not enough for

critical systems, and the use of formal verification methods
[2, 5] is necessary.

At the same time, for event-driven systems, it is not
enough to specify a logical precondition that must be
met before starting work and a logical postcondition that
must be met because of the implementation of a certain
sequence of events/actions, since the same set of actions
can be performed both in permissible sequence and in an
undesirable forbidden sequence.

Thus, the formal requirements for the systems of
the class under consideration must be set in the form

Hay4HO-TexXHU4eCcKnii BECTHUK MHDOPMALIMOHHbLIX TEXHONOM M, MeXaHUkn 1 ontukun, 2023, Tom 23, N2 4
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 4

751

mailto:riv615@gmail.com
https://orcid.org/0000-0003-4225-4124
mailto:fedornovikov51@gmail.com
https://orcid.org/0000-0003-4450-0173
mailto:lnf@iias.spb.su
https://orcid.org/0000-0002-4008-9316

Verification of event-driven software systems using the specification language of cooperating automata objects

of a description of both admissible and inadmissible
sequences of events/actions. Various methods are known
for the formal description of a set of sequences which vary
depending on how diverse the elements of the sequences
are and how complex the sequences are organized.

In this case, elementary events/actions can be
interpreted as symbols of a finite alphabet, sequences of
actions can be interpreted as words in this alphabet, and
in this case, formal requirements put some language in a
given alphabet [6].

The purpose of this article is to present methods
and algorithms that allow for a certain class of reactive
systems, namely for systems described in the Cooperative
Interaction Automata Objects (CIAO) language [7, 8], to
build a formal description of a set of sequences of actions
(a set of possible execution protocols) in a form very close
to conditional regular expressions [9] automatically.

The application of the CIAO specification language
for building event-driven systems

The practical application of the CIAO language in
the field of creating control and data processing systems
has shown good results, in particular, a high degree of
reliability of software created using this language [10].
The CIAO language is based on the use of state transition
graphs to describe the behavior of reactive systems, and
Unified Modeling Language state machine diagrams [11]
are used as transition graphs extended with additional
constructions and conventions to increase the expressive
power of the language. The most significant innovation of
the CIAO language is, on the one hand, the multiplicity of
interacting automata objects and, on the other hand, the
strict typing of interaction interfaces.

In the article [8], we considered the use of the CIAO
language for building control systems using the example of
the elevator control problem described by D. Knuth [12].

In this problem, the actions that the elevator can perform,
the conditions that the control algorithm can check, and
the requirements that the control algorithm must satisfy
are specified. Because of applying the technique described
in the article [8], the specification of the elevator control
algorithm in the CIAO language was obtained, as shown
in Fig. 1.

Here x is the number of the starting floor, y is the
number of the target floor, ¢, is the maximum waiting time
for the passenger to start service, ¢, is the maximum waiting
time for the elevator to enter the passenger

This specification contains states, events, actions,
and guard conditions. Abbreviated identifiers according
to the approach proposed in [13] accompanied by short
descriptions are given in Table 1.

For a passenger, all events come from within, from
free will, and only the ez5 event comes from the elevator.
The elevator, on the other hand, has no free will, and all
the events of the elevator are the actions of the passenger.

In article [8], the requirements for the control system
are formulated as follows.

1. All requests to move to the floors inside the elevator
must be serviced.
2. All elevator call requests from floors must be serviced.

In the article [8], it is also shown how the
specification in Fig. 1 guaranties the fulfillment of
requirements 1 and 2. Here we go further.

When developing critical systems, it is necessary
to be able to verify compliance with requirements
at all stages of development, including the ability to
change requirements if necessary or to incorporate new
requirements into an existing system. Consider, for
example, the following additional requirement.

3. Ifthere is a passenger in the elevator car, the light must
be turned on.

In the following sections, we show how this new
additional requirement can be verified.

Elevator
floor : int
num : int
/ lighton;
open(x)
after(t»)
ad / close(floor);
getin lightoff
/ num:=1
getin
—(lighton goto)
. [else] / close(floor);
C lightoff move(y); floor:=
—(move(x) [floor=y] |~ open(y)
—(close(x)

Passenger J
intention.
/ call(x) call(x)
open(x) —O0—
[else] goto(y)
[want] ©
/ getin
getin
In :
where getout
/ goto(y) —O—
Closed open(x)
—O—
open(y)
[want] [else]
/ getout >@
inte?tion re?ct wh?re want

Fig. 1. Specification of elevator control system in CIAO language

7 2 Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MeXaHKn 1 ontukn, 2023, Tom 23, N2 4
S Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 4

|.V. Afanasieva, F.A. Novikov, L.N. Fedorchenko

Table 1. States, Events, Actions and Guard Conditions IDs and descriptions

1D Name Kind Description

el intention Event The passenger had the idea to take the elevator from floor x to floor y

e2 reject Event The passenger changed his mind about taking the elevator

e3 where Event The passenger has decided which floor he should get to

ezl call (x) Event/Action The passenger presses the elevator call button on floor x

ez2 goto () Event/Action The passenger in the elevator cabin presses the departure button to floor y

ez3 getin Event/Action The passenger enters the elevator

ez4 getout Event/Action The passenger exits the elevator

ez5 open (x) Event/Action Open elevator and shaft doors on floor x

z1 move Action Move the elevator to floor x

z2 lighton Action Switch the lights on

z3 lightoff Action Switch the lights off

z4 close Action Close the doors of the elevator car and the doors of the shaft on floor x

cl want Guard The passenger wants to use the elevator

c2 floor =x Guard The elevator is on floor x

s1 Out State The passenger is outside the elevator car

52 In State The passenger is in the elevator car, the doors are open, and the elevator is stopped

s3 Closed State The passenger is in the elevator car, the doors are closed, and the elevator is
moving

s4 Idle State The elevator is idle, the doors are closed, and the lights are off

s5 Ready State The elevator is ready for service, the doors are open, and the lights are on

s6 Busy State The elevator is serving a passenger, the doors are closed, the lights are on, and
the elevator is moving

The description of the semantics for reactive systems

The basis of the proposed verification methods is the
use of the technique of formal description of languages.
In these notations and conventions, elementary actions
are symbols of some alphabet (in this example, the symbols
of the alphabet are listed in the first column ID of Table 1).
Thus, the program execution protocol is a word in a
given alphabet, and the entire set of protocols, that is, the
semantics of the program, is a language over this alphabet.
In terms of formal languages, the requirements for the
system are expressed as some statements about the structure
of the words of the language that define the semantics. It
is most convenient to set the structure of words using a
regular expression, and then checking compliance with the
requirements is reduced to the problem of parsing [14].
Let us explain what has been said with an example.
In the notation of Table 1, we introduce the event/action
class zz, which includes all actions except z2, z3, z4, and
ez5. Then, requirement 3 is written as the following regular
expression (where * denotes the Kleene iteration, as usual).

(z2)*, 22, ez5, ((z2)*, 24, (zz)*, ez5, (zz)*)*, z4, z3. (1)

In fact, requirement 3 means that the actions of turning
on/off the light and entering/exiting the passenger must
always be performed strictly in the specified sequence
relative to each other and nothing else.

The fulfillment of the requirements described in this
way is easily established by the algorithm for checking

that each instance of the program execution protocol
conforms to the regular language specified by the regular
expression (1). Therefore, we assume that the requirements
for the system are specified by a set of regular expressions,
possibly with guard conditions, and the system itself
is specified by a set of transition graphs in the CIAO
language. The arcs of this transition graph are marked by
events/actions which are considered as symbols of regular
expressions.

Algorithm for automatic verification of semantics

Verification of compliance with the requirements for a
given system in the CIAO language is carried out in three
stages.

At the first stage, according to the given transition
graphs of interacting automata objects and link scheme, a
single graph is built, which is similar to a language source
graph [15]. This source graph actually defines the semantics
of the program, so we call it the semantic graph. The nodes
in this graph correspond to events/actions, and the arcs can
be labeled with guard conditions.

The graph turns out to be single since the action in one
graph of transitions through the corresponding interface is
unified with the event in another graph of transitions. The
paths in the constructed graph correspond to the system
execution protocols, that is, the words of the language of
the semantics being verified. Fig. 2 shows a semantic graph
for an elevator control system.

Hay4HO-TexXHU4eCcKnii BECTHUK MHDOPMALIMOHHbLIX TEXHONOM M, MeXaHUkn 1 ontukun, 2023, Tom 23, N2 4
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 4

753

Verification of event-driven software systems using the specification language of cooperating automata objects

call() [floor=x] lighton open(x)[want] g/e‘ti\n go/t%y) [else]close(ﬂoor)
/ floor:=x [else]
[want]
move(x)
@< / floor:=y
] /T NN
lightoff close(floor) getout open(y) move(y)

Fig. 2. Semantic graph of the elevator control system

In the second stage, conditional regular expressions
from the graph that describe the language of the semantics
of the system being verified are constructed. If the language
of semantics turns out to be regular (which is often
encountered in practice, for example, in communication
protocols [16]), then the proposed methods turn out to be
universal and allow one to extract a regular expression
describing the semantics of a program directly from a given
program in the CIAO language automatically.

If the semantic language of the program being checked
is not regular, then it is impossible to obtain a single regular
expression, but it is possible to obtain a certain set of
expressions provided by guard conditions. We can say that
the behavior of the program as a whole can be described as
a set of several descriptions of the behavior of the program
in special “modes”, each mode being characterized by
its own guard condition. The division of the program
into different modes of operation is not automatic, but is
determined by the programmer in the CIAO language when
setting guard conditions. In this example, the following
conditional regular expression is obtained, matching the
bold path in the semantic graph in Fig. 2.

ezl, [c2], 22, ez5, [!c1], 24, Z3. 2)

At the third stage, it is necessary to match the
requirements given by the templates with the regular
expressions obtained at the second stage. The matching
consists of checking that the received regular expressions
describing the semantics (paths from the initial node to the
final one in the semantic graph) really have the structure
prescribed by the requirements templates. For example, it
is easy to check that the resulting regular expression (2) is
indeed a special case of pattern (1), which means that the
introduced requirement 3 is satisfied.

Discussion and conclusion

Thus, if the terms of reference for a responsible
reactive system are described in terms of acceptable
and unacceptable sequences of elementary actions using
conditional regular expressions, i.c., the desired and
undesirable behavior is indicated, then the proposed
methods allow, without testing, a mathematically strict
check of the compliance of the developed system in the
CIAO language to the requirements specified automatically.

Last but not least, this is the positioning of the
proposed semantic verification method by constructing

a semantic graph among other verification methods.
When comparing verification methods, it is necessary to
consider two significant factors that affect the theoretical
significance and practical applicability of the methods.
First, what is the expressive power of the formalism used
for the specification? The more powerful the formalism
used; more complex requirements may be specified in the
specification. Second, what is the expressive power of the
programming language being used? The more powerful
the language used, the wider the class of automatically
checked programs.

In his outstanding book [17], Dijkstra developed
the method of predicate transformers which is in fact
a full-scale verification. This method is, in a certain
sense, extremely general, since Dijkstra’s Guarded
Command Language is Turing complete, and the first-
order predicate calculus language is sufficient in all
reasonable cases, according to David Hilbert. However,
subsequent studies have shown that the method of predicate
transformers cannot be completely automated because
the verification problem turns out to be algorithmically
unsolvable if the power of the specification language is
not limited and the power of the programming language
is not limited.

The next step was the development of a family
of methods for model checking [2], among which, as
applied to automaton programs, work [5] stands out.
Model checking allows automation by using temporal
logic languages for the specification and application of
automaton models as programs to be verified. These
restrictions make it possible to narrow the verification
problem to an algorithmically solvable one. However, in
the model checking method, both the class of specifications
and the class of automaton models are still very wide, and
therefore, the automatic verification methods turn out to be
computationally laborious.

In the proposed verification method, the specification
formalism is narrowed down to a well-studied class of
regular languages, and the programming language
is narrowed down to the CIAO language, programs in
which have a very simple and predefined structure. Due
to this narrowing, it was possible to construct an efficient
algorithm for automatic verification. In fact, this algorithm
automatically checks whether the program performs some
actions in a given order or does not perform some other
actions in a forbidden order. No more, but no less. If we
carefully structure the required behavior into elementary
actions and translate informal requirements into conditional

754

Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MeXaHKn 1 ontukn, 2023, Tom 23, N2 4
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 4

|.V. Afanasieva, F.A. Novikov, L.N. Fedorchenko

regular expressions, then in many practical cases the
proposed limited means will be sufficient for effective
verification. The main intellectual effort in automatic

w

10.

18.

References

Harel D., Pnueli D. On the development of reactive systems. Logics
and Models of Concurrent Systems. Berlin, Heidelberg, Springer,
1985, pp. 477-498. https://doi.org/10.1007/978-3-642-82453-1 17
Karpov Tu.G. Model Checking. Verification of Parallel and
Distributed Software Systems. St. Petersburg, BHV-Petersburg Publ.,
2010, 560 p. (in Russian)

Sommerville 1. Software Engineering. 10t ed. Boston, Pearson, 2020.
Hinchey M., Coyle L. Evolving critical systems: a research agenda
for computer-based systems. Proc. of the 17t IEEE International
Conference and Workshops on Engineering of Computer Based
Systems, 2010, pp. 430-435. https://doi.org/10.1109/ECBS.2010.56
Velder S.E., Lukin M.A., Shalyto A.A., laminov B.R. Automata-
Based Program Verification. St. Petersburg, Nauka Publ., 2011, 244 p.
(in Russian)

Fedorchenko L., Baranov S. Equivalent transformations and
regularization in context-free grammars. Cybernetics and Information
Technologies, 2015, vol. 14, no. 4, pp. 29-44. https://doi.org/10.1515/
cait-2014-0003

Novikov F.A., Afanasieva 1.V. Cooperative interaction of automata
objects. Information and Control Systems, 2016, no. 6, pp. 50—64. (in
Russian). https://doi.org/10.15217/issn1684-8853.2016.6.50
Afanasieva 1., Novikov F., Fedorchenko L. Methodology for
development of event-driven software systems using ciao
specification language. SPIIRAS Proceedings, 2020, no. 19, no. 3,
pp. 481-514. (in Russian). https://doi.org/10.15622/sp.2020.19.3.1
Aho A.V., Lam M.S., Sethi R., Ullman J.D. Compilers: Principles,
Techniques, and Tools. 2" ed. Boston, Pearson/Addison-Wesley,
2007, 1009 p.

Afanasieva I.V., Novikov F.A. Software architecture for optical
detector systems. Information and Control Systems, 2016, no. 3,
pp. 51-63. (in Russian). https://doi.org/10.15217/issn1684-
8853.2016.3.51

. Novikov F.A., Ivanov D.Iu. UML Modeling. Theory, Practice, Video

Course. St. Petersburg, Professional’naja literature Publ., 2010, 649 p.

. Knuth D.E. The Art of Computer Programming, V. 1. Fundamental

Algorithms. 314 ed. Addison-Wesley Professional, 1997, 672 p.

. Polikarpova N.I., Shalyto A.A. Automata-Based Programming. St.

Petersburg, Piter Publ., 2011, 176 p. (in Russian)

. Fan W, LiJ., Ma S., Tang N., Wu Y., Wu Y. Graph pattern matching:

From intractable to polynomial time. Proceedings of the VLDB
Endowment, 2010, vol. 3, no. 1-2, pp. 264-275. https://doi.
org/10.14778/1920841.1920878

. Avdoshin S.M., Nabebin A.A. Discrete Mathematics. Formal Logic

Systems and Languages. Moscow, DMK Press Publ., 2018, 390 p. (in
Russian)

. Levonevskiy D., Novikov F., Fedorchenko L., Afanasieva I.

Verification of internet protocol properties using cooperating
automaton objects. Proc. of the 12! International Conference on
Security of Information and Networks (SIN'19),2019, pp. 1-4. https://
doi.org/10.1145/3357613.3357639

. Dijkstra E.W. A Discipline of Programming. 3" ed. Englewood Cliffs,

N.J., Prentice Hall, 1976, 217 p.

Shalyto A.A. Validation of state machine specifications. Scientific and
Technical Journal of Information Technologies, Mechanics and
Optics, 2023, vol. 23, no. 2, pp. 436—438. (in Russian). https://doi.
org/10.17586/2226-1494-2023-23-2-436-438

programming according to this method is required in the
formalization of informal specifications, in full accordance
with a recent letter from Prof. A.A. Shalyto [18].

10.

11.

12.

13.

15.

16.

Jlureparypa

Harel D., Pnueli D. On the development of reactive systems // Logics
and Models of Concurrent Systems. Berlin, Heidelberg: Springer,
1985. P. 477-498. https://doi.org/10.1007/978-3-642-82453-1_17
Kapmos 1O0.I. Model Checking. Bepuduxanus napamiensHbIX U
pacmpenelneHHbIX nporpaMMHubix cuctem. CI16.: BXB-IletepOypr,
2010. 560 c.

Sommerville I. Software Engineering / 10th ed. Boston: Pearson,
2020.

Hinchey M., Coyle L. Evolving critical systems: a research agenda
for computer-based systems // Proc. of the 17t IEEE International
Conference and Workshops on Engineering of Computer Based
Systems. 2010. P. 430-435. https://doi.org/10.1109/ECBS.2010.56
Beasgep C.O., Jlykun M.A., llaxsito A.A., SIMunos b.P.
Bepudukauns aBromarasix nporpamm. CI16.: Hayka, 2011. 244 c.
Fedorchenko L., Baranov S. Equivalent transformations and
regularization in context-free grammars // Cybernetics and
Information Technologies. 2015. V. 14. N 4. P. 29—44. https://doi.
org/10.1515/cait-2014-0003

Hosuxos ®.A., Adanacsesa 1.B. KooneparusHoe B3anMozeiicTBre
ABTOMATHBIX 00BEKTOB // TH(OPMALMOHHO-YIPaBIISIONINE CHCTEMBL.
2016. Ne 6. C. 50-64. https://doi.org/10.15217/issn1684-
8853.2016.6.50

Adanaceena 1.B., Hoeukos ®.A., ®enopuenxo JI.H. Meronnka
MOCTPOCHHS COOBITUITHO-YTIPABISEMbIX IPOTPAMMHBIX CUCTEM C
ncnonb3oBanueM s3bika cnermdukarmuu CIAO // Tpyasr CITMUPAH.
2020. T. 19. Ne 3. C. 481-514. https://doi.org/10.15622/sp.2020.19.3.1
Aho A.V.,, Lam M.S., Sethi R., Ullman J.D. Compilers: Principles,
Techniques, and Tools / 21d ed. Boston: Pearson/Addison-Wesley,
2007. 1009 p.

Adanacrena 1.B., HoBukoB ®.A. ApXxuTeKTypa IporpaMMHOT0O
o0ecredeHust CHCTeM ONTHISCKOH peructparmy // MudopmanmonHo-
ynpasnsmoomue cuctemsl. 2016. Ne 3. C. 51-63. https://doi.
org/10.15217/issn1684-8853.2016.3.51

Hosukos ®.A., Banos /1.10. Monenmuposanue Ha UML. Teopus,
npakTuka, Buaeokype. CII16.: I[Ipodeccronanbhas mureparypa, 2010.
640 c.

Knuth D.E. The Art of Computer Programming, V. 1. Fundamental
Algorithms / 31d ed. Addison-Wesley Professional, 1997. 672 p.
[onukapnosa H.1., llansiro A.A. ABTOMaTHOE IPOrpaMMHUPOBAHHE.
CII6.: ITurep, 2011. 176 c.

. Fan W, LiJ., Ma S., Tang N., Wu Y., Wu Y. Graph pattern matching:

From intractable to polynomial time // Proceedings of the VLDB
Endowment. 2010. V. 3. N 1-2. P. 264-275. https://doi.
org/10.14778/1920841.1920878

ABpomna C.M., HaGeOun A.A. JluckperHas maremarHka.
®dopmanbHo-10rHYeckne cucteMs! u si3piku. M.: IMK Ilpecc, 2018.
390 c.

Levonevskiy D., Novikov F., Fedorchenko L., Afanasieva I.
Verification of internet protocol properties using cooperating
automaton objects // Proc. of the 12th International Conference on
Security of Information and Networks (SIN’19). 2019. P. 1-4. https:/
doi.org/10.1145/3357613.3357639

. Dijkstra E.W. A Discipline of Programming / 314 ed. Englewood

Cliffs, N.J.: Prentice Hall, 1976. 217 p.

. Maneito A.A. Banunanus aBToMaTHbIX crierupukanuii / HaydHo-

TEXHUYECCKUH BECTHUK HH(OPMAL[OHHBIX TEXHOJIOTHI, MEXaHHKU U
omruku. 2023. T. 23. Ne 2. C. 436-438. https://doi.org/10.17586/2226-
1494-2023-23-2-436-438

Hay4HO-TexXHU4eCcKnii BECTHUK MHDOPMALIMOHHbLIX TEXHONOM M, MeXaHUkn 1 ontukun, 2023, Tom 23, N2 4

Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 4

755

https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1109/ECBS.2010.56
https://doi.org/10.1515/cait-2014-0003
https://doi.org/10.1515/cait-2014-0003
https://doi.org/10.15217/issn1684-8853.2016.6.50
https://doi.org/10.15622/sp.2020.19.3.1
https://doi.org/10.15217/issn1684-8853.2016.3.51
https://doi.org/10.15217/issn1684-8853.2016.3.51
http://D.Iu
https://doi.org/10.14778/1920841.1920878
https://doi.org/10.14778/1920841.1920878
https://doi.org/10.1145/3357613.3357639
https://doi.org/10.1145/3357613.3357639
https://doi.org/10.17586/2226-1494-2023-23-2-436-438
https://doi.org/10.17586/2226-1494-2023-23-2-436-438
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1109/ECBS.2010.56
https://doi.org/10.1515/cait-2014-0003
https://doi.org/10.1515/cait-2014-0003
https://doi.org/10.15217/issn1684-8853.2016.6.50
https://doi.org/10.15217/issn1684-8853.2016.6.50
https://doi.org/10.15622/sp.2020.19.3.1
https://doi.org/10.15217/issn1684-8853.2016.3.51
https://doi.org/10.15217/issn1684-8853.2016.3.51
https://doi.org/10.14778/1920841.1920878
https://doi.org/10.14778/1920841.1920878
https://doi.org/10.1145/3357613.3357639
https://doi.org/10.1145/3357613.3357639
https://doi.org/10.17586/2226-1494-2023-23-2-436-438
https://doi.org/10.17586/2226-1494-2023-23-2-436-438

Verification of event-driven software systems using the specification language of cooperating automata objects

Authors

Irina V. Afanasieva — PhD, Head of Laboratory, Special Astrophysical
Observatory of the Russian Academy of Sciences (SAO RAS), Nizhny
Arkhyz, 369167, Russian Federation, s¢ 57210431774, https://orcid.
org/0000-0003-4225-4124, riv6 1 5@gmail.com

Fedor A. Novikov — D.Sc., Senior Researcher, Professor, Peter the
Great St. Petersburg Polytechnic University (SPbPU), Saint Petersburg,
195251, Russian Federation; Professor, Alferov Academic University,
Saint Peterburg, 194021, Russian Federation, s¢ 16441904500, https://
orcid.org/0000-0003-4450-0173, fedornovikov5 1 @gmail.com

Ludmila N. Fedorchenko — PhD, Senior Researcher, St. Petersburg
Federal Research Center of the Russian Academy of Sciences, Saint
Petersburg, 199178, Russian Federation, s¢ 36561350100, https://orcid.
org/0000-0002-4008-93 16, Inf@iias.spb.su

Received 02.05.2023
Approved after reviewing 16.06.2023
Accepted 26.07.2023

N0l

ABTOpBI

AdanacbeBa HpuHa BUKTOpOBHA — KaHIMJAT TEXHUYECKUX HayK,
3aBenyromuil Taboparopueit, CrienuansHas acTpodusmdeckas oocepBa-
topust Poccuiickoii akanemun Hayk, Husxauii Apxeis, 369167, Poccuiickast
Depepanus, s¢ 57210431774, https://orcid.org/0000-0003-4225-4124,
riv615@gmail.com

HoBunkos ®exop AjlekcaHIPOBHY — JOKTOP TEXHHYECKHX HAyK, CTap-
LIMI Hay4YHBIH COTPYIHUK, podeccop, Cankr-IlerepOyprekuit monurex-
Hudeckuil ynusepcuteT Ilerpa Bemuxoro, Cankr-IletepOypr, 195251,
Poccuiickas ®enepanust; npodeccop, Cankr-IlerepOyprekuii Hamuo-
HaJIbHBIH MCCIIEI0BATEIbCKUN AKaJIEMUYECKUI YHUBEPCUTET UMEHH
K. Anéposa, Poccuiickoii akagemun Hayk, Cankt-IlerepOypr, 194021,
Poccuiickas ®enepanns, s¢ 16441904500, https://orcid.org/0000-0003-
4450-0173, fedornovikov51@gmail.com

®enopuenko Jlrogmuiaa HukonaeBHa — KaHAWIAT TEXHUYECKUX HayK,
crapiuit HayuHbIi corpyauk, Cankt-IlerepOypreknii denepanbHblit Hc-
ciesioBarenbekuii ieHTp Poccuiickoii akagemun Hayk, Cankr-IlerepOypr,
199178, Poccuiickas deneparms, [s¢ 36561350100, https://orcid.org/0000-
0002-4008-9316, Inf@jiias.spb.su

Cmamus nocmynuna 6 peoaxkyuro 02.05.2023
Ooobpena nocne peyenzuposarnus 16.06.2023
Ipunama x neuamu 26.07.2023

Pa6oTta gocTynHa no nMueH3um
Creative Commons
«Attribution-NonCommercial»

756

Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MeXaHKn 1 ontukn, 2023, Tom 23, N2 4
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 4

https://orcid.org/0000-0003-4225-4124
https://orcid.org/0000-0003-4225-4124
mailto:riv615@gmail.com
http://D.Sc
https://orcid.org/0000-0003-4450-0173
https://orcid.org/0000-0003-4450-0173
mailto:fedornovikov51@gmail.com
https://orcid.org/0000-0002-4008-9316
https://orcid.org/0000-0002-4008-9316
mailto:lnf@iias.spb.su
https://orcid.org/0000-0003-4225-4124
mailto:riv615@gmail.com
https://orcid.org/0000-0003-4450-0173
https://orcid.org/0000-0003-4450-0173
mailto:fedornovikov51@gmail.com
https://orcid.org/0000-0002-4008-9316
https://orcid.org/0000-0002-4008-9316
mailto:lnf@iias.spb.su

