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Abstract

Modern neural network technologies are actively used for Unmanned Aerial Vehicles (UAVs). Convolutional Neural
Networks (CNN), are mostly used for object detection, classification, and tracking tasks, for example, for such objects
as fires, deforestations, buildings, cars, or people. However, to improve effectiveness of CNNss it is necessary to perform
their fine-tuning on new flight data periodically. Such training data should be labeled, which increases total CNN fine-
tuning time. Nowadays, the common approach to decrease labeling time is to apply auto-labeling and labeled objects
tracking. These approaches are not effective enough for labeling of 8 hours’ huge aerial sensed datasets that are common
for long-endurance USVs. Thus, reducing data labeling time is an actual task nowadays. In this research, we propose a
fast aerial data labeling pipeline especially for videos gathered by long-endurance UAVs cameras. The standard labeling
pipeline was supplemented with several steps such as overlapped frames pruning, final labeling spreading over video
frames. The other additional step is to calculate a Potential Information Value (PIV) for each frame as a cumulative
estimation of frame anomality, frame quality, and auto-detected objects. Calculated PIVs are used than to sort out
frames. As a result, an operator who labels video gets informative frames at the very beginning of the labeling process.
The effectiveness of proposed approach was estimated on collected datasets of aerial sensed videos obtained by long-
endurance UAVs. It was shown that it is possible to decrease labeling time by 50 % in average in comparison with other
modern labeling tools. The percentage of average number of labeled objects was 80 %, with them being labeled for
40 % of total pre-ranged frames. Proposed approach allows us to decrease labeling time for a new long-endurance flight
video data significantly. This makes it possible to speed up neural network fine-tuning process. As a result, it became
possible to label new data during the inter-flight time that usually takes about two or three hours and is too short for other
labeling instruments. Proposed approach is recommended to decrease UAVs operators working time and labeled dataset
creating time that could positively influence on the time necessary for the fine-tuning a new effective CNN models.
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A.M. Fedulin, N.V. Voloshina

Ha TOBEPXHOCTU 3eMJIM, UCIIOJIB3YIOTCSI CBEPTOUHbIE HEHPOHHBIE ceTH. Jlyis moBbILeHNsT 9)PEKTUBHOCTH PaOOTHI
CBEPTOYHBIX HEHPOHHBIX ceTell TpedyeTcs epuoandeckoe 1000ydeHne NpUuMeHsIeMbIX MOJiesIeil HeMPOHHBIX ceTel Ha
BHOBB TOCTYTAIONIMX MOJETHBIX AaHHBIX. Takne oOydvarolue JaHHbIE HEOOXOANMO JOTOIHUTENBHO pa3MedaTb. ITo
TIPUBOJNUT K YBETUIEHHIO OOIIEro BpeMEHH OATOTOBKH 1000yUe€HHON MOAENIN HEHPOHHOM ceTH. 3a7ada COKpaIIeHHs
BPEMEHH Pa3METKH Yallle BCETO PElIaeTcsi MyTeM MPUMEHEHHs MPOLeIyphl aBTOPa3METKH W TPEKHHTA Pa3MEUeHHBIX
00beKkToB. OJHAKO CYIIECTBYIOIINE TOIXOABI HE SBISAIOTCS dQPEKTUBHBIMA IIPH pa3MeTKe CBEPXOOIBIINX JaHHBIX
a’pPOCHEMKH CO CTAaHJAPTHON JUIsl OECHIIOTHBIX JIETATeNIFHBIX allapaToB OOJIBIION MPOZOHKUTEIHHOCTRIO TONETa
(6omee 8 u). Takum 0Opa3om, 3a7a4a MOKCKA JOMOIHUTEIIBHBIX CIIOCOOOB COKPAIICHNST BPEMEHH Pa3MEeTKH SIBIISIETCS
aKTyasnbHOM. B nanHoIt paboTe npeuioxken cnocod ObICTPOi pa3METKH JJAHHBIX a9POCHEMKH, COOpPaHHBIX C BUJIEOKaMep
B TIpOIIecCe MOJIEeTOB OSCITUIOTHBIX JeTaTebHbIX anmaparoB. Meron. CranaapTHas Ipoleaypa pa3MeTKH JIOMONTHEeHa
MPOPEKUBAHMEM CHUIIBHO MEPEKPHIBAIOIIUXCS KaJpPOB B COYETAaHUU C MOCIEAYIOIUM EPEHOCOM PE3YIBTUPYIOIEH
pa3MeTKH Ha Bce KaJphl pa3MedaeMoro BH/eo. [ KaxI0ro 0CTaBIIErocs MOCIe MPOPEKNBAHUS Ka/ipa BEIUHCIACTCS
3HaueHHUe ero moreHnuanbHoit mapopmarnBaocth (Potential Information Value, PIV), kak coBokymHas omeHka
aHOMAaJIMH Kajpa, ero KauecTBa M KOJHNYECTBA aBTOMATHYECKH JCTCKTHPOBAHHEIX 00BEKTOB. [lomydeHHBIE
3nadenus PIV ucnone3yrores ais paHXHPOBaHUS KaIpOB IO YPOBHIO 3HAYMMOCTH. Takum oOpa3om, oreparopy
0eCNMIOTHOTO JEeTAaTeILHOTO anmapara MpeJoCTaBIsIOTCs B Hadalle MPOLeayphl pa3MeTKH Hanbojee 3HaunMble
kaapsl. OCHOBHBIE Pe3yJbTaThl. DKCIEPHUMEHTAIBHOE HCCIIe0BaHNe dPPEKTHBHOCTHU MPEIJIOKEHHOTO MOAX0/a
BBITTIOJIHCHO HA IMOATOTOBJICHHBIX Ha60an JAHHBIX a3POCHEMKHU, IMTOTYICHHBIX C OECIMMIIOTHOTO JIETATEILHOIO arrapara
C MPOJIOTKUTENBFHOCTBIO ChEMKHU He MeHee 8 u. [TokazaHo, 4To BpeMsi pa3sMeTKH MOKET OBbITh YMEHBIIEHO B CPEJIHEM Ha
50 % oTHOCHTENBHO IPHMEHEHUS CYIIECTBYIOMNX MPOrPaMMHBIX cpeacTB. IIpu 3Tom nepsrie 40 % O0TCOPTHPOBAHHBIX
kagpoB coxepxaT 80 % pa3medeHHBIX 00bekTOB. O0cy:kaAenue. [IpeanokeHHbIH crocod Mo3BONSET CyIMECTBEHHO
YMEHBIIUTH HTOTOBOE BPEeMsI Pa3METKH BHOBb ITOCTYMAIOMINX MTOJIETHBIX BHICOJAHHBIX IJISI JANbHEHIIero 1000y IeH s
MOJIETTH CBEPTOYHBIX HEHPOHHBIX CeTeld. DTO MO3BOJISIET MPOBECTH Pa3METKy HEIOCPEICTBEHHO B MEXKIOJIETHBIN
HHTEPBaJI BpeMEHH, COCTaBJIIONINHI B cperHeM 23 4. [IpearaemMblii oixo MOXKeT OBbITh IIPUMEHEH JUTSl yMEHBIIEHHS
3arpy3KH OrepaTtopoB OECIMIOTHOTO JIETATEILHOTO amapara.
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Ccepuika pist nutupoBanusi: Oenynun A.M., Bonommua H.B. Crioco6 ObIcTpoii pa3MeTky cBepXOOIBIINX AaHHBIX
aspocheMky // Hay4HO-TeXHUYIECKHUi BECTHUK HH(YOPMAIIMOHHBIX TEXHOIOT Ui, MexaHuku 1 onTuku. 2024. T. 24, Ne 2.

C. 190-197 (na anrm. s3.). doi: 10.17586/2226-1494-2024-24-2-190-197

Introduction

Latest achievements in the object detection algorithms

[1] relying on the Deep Neural Network (DNN) machine

learning methods, such as Faster R-CNN [2—4], SSD [5],

U-Net [6], YOLOV2 [7, 8], YOLOV3 [9], YOLOvS5!, and

YOLOv7 [10], have contributed to a rapid development of

the on-board High-Performance Intellectual Computing

Systems (B-HPICS) for Unmanned Aerial Vehicles

(UAV) capable to process data streams from sensors using

DNN explicitly in-flight. Despite B-HPICS are always

less powerful than ground ones, their on-board location

provides a number of great advantages such as:

— Usage of the original data input instead of compressed
one is often more confident;

— Sensor auto-control allows to scan area much faster and
achieve higher search performance than manual one
(Fig. 1);

— Sensor auto-control mode allows to remove significant
part of the routine workload from UAV’s operators [11].
State-of-art UAVs equipped with B-HPICS [12] were

designed as long-endurance UAVs to handle in real time

radar station signals and infrared and optoelectronic camera
video streams data allowing detecting and recognizing
objects of the interest with the high accuracy. Such long-
endurance UAVs are usually equipped with both high-
quality sensors and powerful B-HPICS; thus, they may
become a real competitor over conventional aerial sensing

I Available at: https://zenodo.org/records/4679653 (accessed:
15.01.2024).

solutions, such as manned aircrafts, Earth remote sensing
satellites, and drones especially amidst huge areas [13].
B-HPICS should be flexible for the environmental changes
and capable for self-improvement of its DNNs by training
and fine-tuning processes on the new datasets collected
and prepared explicitly from the recent flights. This task is
still relevant for modern Convolutional Neural Networks
(CNN) used by long-endurance UAVs.

Problem Statement

There have been developed several effective
technologies [14—16] of the so called “few shot learning” to
improve already trained CNN model by a small number of
labeled images on which unrecognized objects of previous
CNN model has been labeled. But there exists an open
problem for such approach: how to label aerial sensed
video (huge dataset of a million significantly overlapped
frames) in a short inter-flight service time. Moreover, this
operation should be usually done by UAVs’ operator on-site
where there is neither high computer power no enough stuff
available. The time line of such process is shown in Fig. 2.

Nowadays there exist labeling frameworks like
SuperAnnotate (Fig. 32), CVAT, V7 Darwin, and VGG
Image Annotation [17] featured such powerful automation
tools as auto-contour tool, automatic object classification,
frames sampling and others.

2 SuperAnnotate labelling softwire observation on pipelines
for AT website. Available at: https://humansintheloop.org/tools-
we-love-vol-3-superannotate (accessed: 15.01.2024).
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Our experiments showed that all these tools are usually  and annotate as much as possible objects of interest in an
failed to process 8 hours video in a 2—3 hours of inter-  aerial sensed video with a computing power limit up to
flight service time. Thus, our goal was to create a fast 10 TFlops involving only one operator in a required inter-
labeling automation pipeline that allows operator to identify ~ flight service time limitation.

4
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«/ Annotation finished

Fig. 3. An example of SuperAnnotate user interface
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Proposed approach

As long as there is not enough time to process all long-
duration aerial video in a short inter-flight service time,
we propose several automated processes. One is to yield
frames for labeling not in the sequential order but by its
informativity metric defined as Potential Information Value
(PIV). PIV should demonstrate not only visual quality of
the frame, but if there are any objects of interest and some
animalities and how many of them are in the frame at the
same time. These parameters were chosen as the most
important video frame characteristics for labeling process.

Thus, the PIV of a frame is defined as a combination of
three parameters that we named as: image quality (IQ), the
number of auto-detected objects (DO), and the number of
found anomalies (AN) (frames zones with potential objects
of interest):

PIV;=F(AN,, DO,, 10,), (1)

1

where AN;, DO,, IQ; are corresponding coefficients that
are calculated for current frame and i — index of current
video frame that should be analyzed and labeled. F'is a
function with corresponding parameters that combine them
to represent informativeness of the frame.

The main hypothesis is that the more is the value of
of the frame the more is probability that it contains the
objects of interest that should be labeled and are able to
be noticed and recognized by the operator. Thus, if the
hypothesis is true, it allows to review just 30-40 % of the
most informative frames to be label a significant number
of objects of interest.

Besides of frames ranging by PIV and state-of-art
labeling automation we also propose another two features
to be included in the standard labeling pipeline:

1) to use auto-spreading of labeling results because aerial
sensed video often contains significantly overlapped
frames;

2) to sample video dynamically by dense optical flow
threshold exceedance instead of fixed time interval.

In addition, it is proposed to use image modification
detection step at the beginning of the labeling process to
make labeled data more reliable with aspect of information
security. Thus, resulting training, fine-turning processes,
and CNN models could become more stable to adversarial
attacks [18, 19] that make all labeling process more safe
and secure.

In accordance with proposed hypothesis, the typical
labeling pipeline have been modified. The proposed Fast
Labeling Pipeline (FLP) is represented in Fig. 4.

The proposed new labeling pipeline steps are marked
with gray color in Fig. 4.

Potential information value

When realizing FLP it is necessary to calculate the (1).
In our research we propose to calculate it according the
equation:

where C;p — image quality coefficient, Cjy € [0, 1];
C,y— anomality coefficient is calculated as:

CAN:AN/ANLIH’ CANE [0, 1],

where AN — number of anomalies that were found on
current frame; AN,; — number of anomalies that were
found on all frames; Cp, — meaningfulness coefficient is
calculated as:

CDO = DO/DOuH, CDO € [O, 1],

for trusted sources: to upload
video steam (data) directly

for untrusted sources: to check video-stream frames (data) for
unexpected modifications (poisoning) and filter them out

analyses

For video data: frame pruning with defined overlap to create a number of frames for detail J

quality coefficient (IQ)

For each frame: to detect anomalies (AN), auto-detected objects (DO) and calculate image

For resulting frames: to calculate PIV as F(AN, DO, 1Q)

L For all frames: to range all frames out according to their PIVs in a decreasing way

exceed:

For each frame in a ranged collection: to do following steps until time limit is

1. Automatically contour and annotate already detected objects (DO)
2. Automatically contour detected anomalies (AN) and manually annotate them
3. Manually contour and annotate other new objects of interest (NO)

L For all frames: Automatically spread labelling through overlapping frames

M For all frames: to verify all labelled objects ‘

I-»{ For all frames: to create labelled dataset ‘

Fig. 4. Proposed fast labeling pipeline
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where DO — number of objects that were detected by the
current pretrained model of CNN; DO,;; — number of
objects that were detected by the current pretrained model
of CNN on all frames of video.

In our approach all coefficients should be defined in
a way that the higher is its value the better is the frame
informativeness. In this case the higher is frames PIV the
more informative is the frame.

For the C;y we propose to calculate its value as a
complex quality coefficient according to the equation:

Cip=FL(N, H, Sh), )

where F'1 is a function with corresponding parameters that
combine them to represent frame quality. It was proposed
to define such quality parameters as: N — complex frame
noisiness parameter, / — complex frame histogram quality
parameter, Sh — complex frame sharpness parameter.
Complex frame noisiness parameter should show how
noisy is a frame because it is well known that the higher is
frame noise the harder to detect any object in it. Complex
frame histogram parameter should show how close is frame
histogram to the normal one. That means that it should not
contain many peaks or be concentrated in local part of all
histogram. Complex frame sharpness parameter should
show if it contains abnormal sharpen elements.

In addition, a Cjy value of each frame could be
transformed from quantitative to qualitative form to be
shown for an operator who labels frames of a flight video
to make it easier to understand if it has good quality or not.

Experimental part

The proposed fast labeling pipeline was implemented
as a cloud-based web-service featuring GPGPU support for
fast performance of image processing operations.

During the experiment, there used several pretrained
neural networks: YOLOv7 [20] with predefined classifier
for an object detection and classification, WideResnet-50
[21] as an anomality detector, and FlowNet2S [22] as an
optical flow definer.

To calculate quality coefficient C;, (2) we choose
following approaches to define quality parameters.
Complex frame noisiness parameter N is obtained by
analyzing results of smoothing filters such as Gaussian,
Wiener, mean, and median filters with 3 x 3 filtering
windows size in combination with analysis of one- and
two-dimensional Fourier spectrum in an aspect of higher
spectrum coefficients. The mean square distortion of
elements was taken to estimate noisiness. Complex frame
histogram quality parameter 4 is obtained by analyzing
average offset of normalized brightness, average offset of
normalized contrast, and histogram density. Complex frame
sharpness parameter S% is obtained based on analyzes of
both Gaussian and Laplacian filters output with a frame as
an input of the first one.

In our realization the OpenCV libraries! were used to
implement all applied filters and transforms.

1 OpenCv website. Available at: https://opencv.org/home/
(accessed: 15.01.2024).

Thus, in proposed method the frame quality is
calculated as quality coefficient C;y:

3

2
Cio =" TISigne, G)

=1

where C; — quality parameter, C; — frame histogram
quality parameter (equal to H in (2)), C, — frame sharpness
parameter (equal to S% in (2)), C3 — frame noisiness
parameter (equal to N in (2)), and Sigm, is a quality
parameters weighted coefficient that is calculated for each
corresponding quality parameter C;:

k5C;
Sigmp =1 - ————=, k=126/25.
G TR 50y

This quality parameter weighted coefficients Sigm,
are proposed to balance influence of low values of quality
parameters in nonlinear way. So that value of quality
coefficient Cjy strongly drops down if any of quality
parameters C; become extremely low.

The frame quality is estimated by the resulting value of
Cjp € [0, 1] (3). For better visualization (Fig. 5, b) in our
experiment the transformation thresholds were expertly
defined as:

Cjp = 0.55 — good quality,
0.3 < Cjp < 0.55 — medium quality,
Cjp < 0.3 — low quality.

The examples of proposed fast labeling pipeline results
are shown in Fig. 5 and Fig. 6.

Fig. 5 and Fig. 6 show that the operator is provided
with the most informative frames and its parameters at
the very beginning of labeling process. Auto-labeling
process matches existing anomalies is they are proper for
predefined classifier. Additional parameters of the auto-
labeling results are also shown for the operator to check
labeling correctness and to find and label unlabeled objects
of interest in much shorter time.

For the experimental part there was chosen six types
of 8-hour FullHD aerial sensed video in a day time
over countryside area. Total number of objects lays in
a range from 5 to 100. The number of object classes is
3 (3 types of vehicles). One of the testing videos has
low quality (smoothed view with a block structure on
it). There are videos that have concentration of objects
of interest at a short part of the video (at the beginning
or end or somewhere in the middle) and the others have
approximately uniform distribution of objects over the
video frames. Three experienced specialists of labeling took
part in the experiment.

Experimental results are shown in Fig. 7. It shows
dependence between the average percentage of labeled objects
Nobj and the average percentage of labeled video frames Nfr.

Graphics in Fig. 7 show that with proposed Fast
Labeling Pipeline (FLP) 80 % of objects are labeled in
40 % of first pre-ranged frames in average in comparison
with CVAT [23]. It was shown experimentally that
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Fig. 6. An example of frame with anomalies with result of auto-labeling with current CNN of proposed software: an interface view
(a), auto-labeling parameters description (b)
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Fig. 7. Experimental results of dependence between the average
percentage of labeled objects Nobj and the average percentage
of labeled video frames Nfi: CVAT — Computer Vision
Annotation Tool, FLP — proposed Fast Labelling Pipeline,
HT — hypothetic effectiveness threshold

100 Nfir, %

resulting labeling time become 50 % less in average due
to the applied auto-labeling and proposed PIV ranging and
label spreading methods. HT is a hypothetic effectiveness
threshold that is based on practical needs of real labeling
process. HT could be looked at as a goal for future
optimization.

Conclusion

In the presented research, a new pipeline was proposed
allowing us to fit labeling time into a short inter-flight
period. Such effect was achieved by combining both state-
of-art automation tools (such as object detection and auto-
contour tools) and proposed tools: ranging frames by its
PIV, dynamic labels spreading through overlapped frames
and smart frames sampling. A cloud-based labeling web-
service was developed and it was shown experimentally
that proposed pipeline allows labeling 80 % objects of
interest of all existing objects just by processing 40 % of
pre-ranged frames in average that fits 2—3 hours of inter-
flight service time. Future research will be aimed to find
optimal PIV parameters calculation algorithm (close to
hypothetic effectiveness threshold) by input video analysis.
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