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Abstract
The computational demands of the shortest path algorithms on large-scale graphs with millions of vertices and edges pose 
significant challenges for serial implementations, often requiring hours of execution time even on powerful CPUs. This 
paper evaluates Graphic Processing Units implementations of three fundamental shortest path algorithms — Bellman-
Ford, Dijkstra, and Floyd-Warshall using NVIDIA CUDA platform. We implemented and compared multiple variants 
of each algorithm, starting with basic parallel approaches and applying various optimization techniques, including grid-
stride loops, shared memory utilization, memory coalescing, and algorithm-specific enhancements such as flag-based 
early termination for Bellman-Ford and tiled computation for Floyd-Warshall. Our study provides performance analysis 
comparing different optimization strategies and their effectiveness across various graph datasets.
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Аннотация
Вычислительные требования к алгоритмам поиска кратчайшего пути на больших графах с миллионами 
вершин и ребер представляют собой значительную проблему для последовательных реализаций, часто требуя 
многочасового времени выполнения даже с помощью мощных процессоров. В работе выполнена оценка 
реализации на графических процессорах трех фундаментальных алгоритмов поиска кратчайшего пути: 
Беллмана–Форда, Дейкстры и Флойда–Уоршелла с использованием платформы NVIDIA CUDA. Проведено 
сравнение нескольких вариантов каждого алгоритма, от базовых параллельных подходов до специфических 
алгоритмов улучшения. Исследованы базовые методы оптимизации, включая циклы с шагом сетки, 
использование общей памяти, объединение памяти. Также выполнен анализ алгоритмов улучшения, таких как 
раннее завершение на основе флагов для алгоритма Беллмана–Форда и тайловые вычисления для алгоритма 
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Флойда–Уоршелла. В исследовании представлен анализ производительности, выполнено сравнение различных 
стратегий оптимизации и их эффективности на различных наборах графовых данных.
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Introduction

Shortest path algorithms have applications across 
domains including transportation networks, communication 
systems, social ne twork analysis, and Very Large-Scale 
Integration chip design [1]. These algorithms solve the 
problem of finding the minimum cost path between 
vertices in weighted graphs, which is required in real-world 
scenarios such as GPS navigation systems to find optimal 
routes, network protocols to determine efficient data 
transmission paths, and circuit designers to optimize signal 
routing. The computational complexity of the problem 
becomes challenging as graph sizes grow to millions of 
vertices and edges, commonly encountered in modern 
applications, making serial implementations impractical 
for time-sensitive applications [1, 2].

Modern Graphics Processing Units (GPUs) contain 
many cores capable of executing operations in parallel 
which make them suitable for algorithms that can exploit 
data parallelism. However, parallelizing shortest path 
algorithms on GPU presents unique challenges including 
irregular memory access patterns, varying computational 
loads across threads, and complex data dependencies that 
can limit parallel efficiency [1, 2]. The inherent nature 
of shortest path algorithms can affect their suitability for 
GPU implementation. Bellman-Ford can handle negative 
edge weights but requires multiple iterations, Dijkstra 
provides better performance for non-negative weights but 
has inherent sequential dependencies, and Floyd-Warshall 
computes all-pairs shortest paths with high computational 
complexity [3].

This paper presents a comprehensive study of GPU 
implementations for three fundamental shortest path 
algorithms using Compute Unified Device Architecture 
(CUDA). We implement and evaluate multiple optimization 
strategies for each algorithm, progressing from basic 
parallel approaches to sophisticated techniques including 
memory optimization, algorithmic enhancements, and 
architecture-specific optimizations. Our evaluation focuses 
on understanding the performance characteristics and trade-
offs of different implementation approaches across various 
graph datasets.

Background of the problem

The Bellman-Ford algorithm finds the shortest paths 
from a source vertex to all other vertices in a weighted 
graph [2]. The key advantage of Bellman-Ford over 
Dijkstra algorithm is its ability to detect negative cycles 
and handle graphs containing negative cycles reachable 
from the source vertex [4]. The algorithm performs a series 

of relaxation and iteratively improves distance estimates 
until optimal paths are found. For a graph with |V| vertices, 
the algorithm performs |V| – 1 iterations, where each of 
iteration relaxes all edges and updates distance estimates 
if a shorter path is discovered [2]. Since the order of edge 
relaxation within iteration does not affect correctness, 
parallelization can be achieved by allowing multiple edges 
to be processed simultaneously. 

When applied to the all-pairs shortest path problem, 
Bellman-Ford must be executed |V| times, once for each 
source vertex. For number of edges |E|, the sequential 
time complexity becomes O (|V|2 × |E|), as each of the |V| 
source vertices require O (|V| × |E|) time for single-source 
computation. 

The space complexity for storing all-pairs distances 
is O (|V|2) for the distance matrix, plus O (|V| + |E|) for 
the graph representation, yielding total space complexity 
O (|V|2 + |E|). The answer size is O (|V|2) for distance values 
only, or O (|V|3) if complete path information is stored for 
all vertex pairs [2].

Dijkstra algorithm solves the single-source shortest path 
problem by maintaining a priority queue of vertices ordered 
by their current shortest distance estimate and greedily 
selects the vertex with minimum distance for processing. 
The serial version uses a min-heap to extract the closest 
unvisited vertex, and then relaxes all outgoing edges from 
that vertex. This inherently sequential process of selecting 
the next minimum vertex poses significant challenges for 
parallelization [1, 3]. However, parallel versions can be 
implemented by running multiple instances simultaneously, 
computing shortest paths from different source vertices. 
For all-pairs shortest path computation, Dijkstra algorithm 
must be executed |V| times, once from each source vertex.

The sequential time complexity becomes O (|V| × (|V| +  
+ |E|) log2|V|), representing |V| executions of single-source 
Dijkstra with O ((|V| + |E|) log2|V|) complexity each. The 
space complexity requires O (|V|2) for storing the complete 
distance matrix, plus O(|V|) for the priority queue and 
temporary arrays during each execution, yielding total 
space complexity O (|V|2). The answer size is O (|V|2) for 
distance information, or O (|V|3) when complete shortest 
path trees are maintained for all source vertices [2]. 

The Floyd-Warshall’s algorithm computes shortest 
paths between all pairs of vertices in a weighted graph [2]. 
It can handle negative edge weights but not negative cycles. 
The algorithm employs dynamic programming, considering 
each vertex as an intermediate point in potential shortest 
paths. The algorithm executes |V| iterations, where iteration 
k considers vertex k as an intermediate vertex for all 
vertex pairs (i, j). For each pair, it checks whether the path 
i → k → j offers a shorter distance than the current best path 
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from i to j [3]. This structure makes Floyd-Warshall highly 
suitable for parallelization, as all pairwise distance updates 
(within each iteration) can be performed independently. 
Floyd-Warshall is inherently designed for the all-pairs 
shortest path problem. The sequential time complexity 
is O (|V|3), as it performs |V| iterations, each examining 
all |V|2 vertex pairs for potential improvement through 
the current intermediate vertex. The space complexity 
is O (|V|2) for storing the distance matrix which directly 
represents the shortest distances between all vertex pairs. 
The answer size is exactly O (|V|2) for distance information, 
or O (|V|3) when complete path reconstruction information 
is maintained. Unlike Bellman-Ford and Dijkstra, Floyd-
Warshall complexity does not scale with the number of 
edges |E|, making it particularly efficient for dense graphs 
where |E| approaches |V|2 [5, 6]. 

CUDA Computing
GPUs feature a massively parallel architecture designed 

for high-throughput computation1. Unlike CPUs with few 
powerful cores optimized for sequential processing, modern 
GPUs contain thousands of smaller cores that excel at 
executing the same operation across multiple data elements 
simultaneously. This Single Instruction, Multiple Data 
architecture makes GPUs particularly effective for data-
parallel algorithms1.

CUDA provides a programming framework for general-
purpose GPU computing developed by NVIDIA. In CUDA, 
parallel work is organized into kernels — functions 
executed simultaneously by many threads. Threads are 
grouped into blocks, and blocks are organized into a grid 
structure. This hierarchical organization enables efficient 
resource management and communication patterns1.

The CUDA programming model encompasses several 
key concepts relevant to this work. The thread hierarchy 
organizes individual threads that execute kernel code 
into blocks that can share memory and synchronize 
operations. The memory hierarchy provides different 
levels of storage including global memory with large 
capacity but high latency, shared memory that offers 
fast access but limited capacity per block, and registers 
that provide the fastest access but are limited per thread1 
Grid-stride loops represent a programming pattern that 
allows kernels to process datasets larger than the number 
of available threads. Atomic operations provide hardware-
supported mechanisms for thread-safe memory updates, 
which are crucial for avoiding race conditions in parallel 
algorithms [1].

C h a l l e n g e s  i n  G P U  G r a p h  A l g o r i t h m 
Implementation

Implementing graph algorithms on GPUs presents 
several significant challenges [3] that have been extensively 
documented in the literature. Graph traversal often results 
in irregular memory access patterns that can substantially 
reduce GPU efficiency, as the hardware is optimized for 
coalesced memory accesses [6, 7]. Load balancing presents 
another critical challenge, as vertices may have vastly 
different degrees, leading to uneven work distribution 

1 CUDA C++ Programming Guide. Available at: https://docs.
nvidia.com/cuda/cuda-c-programming-guide/, free. English lang. 
(accessed: 02.06.2025).

across threads and resulting in some threads completing 
their work much earlier than others [6, 7]. Synchronization 
requirements in many graph algorithms necessitate 
coordination between threads, which can potentially limit 
the achievable parallelism and introduce performance 
bottlenecks [1, 3]. Memory bandwidth limitations arise 
when large graphs exceed GPU memory capacity or create 
memory bandwidth bottlenecks that constrain overall 
performance [3]. Understanding these fundamental 
challenges is essential for developing effective GPU 
implementations of shortest path algorithms and forms 
the foundation for the optimization strategies explored in 
this work.

Related Works

Yang et al. [8] proposed a Fast APSP algorithm that 
combines Floyd-Warshall with Dijkstra algorithms for 
large sparse graphs, achieving an average speedup of 
16.97 times compared to CPU Dijkstra and 7.09 times 
compared to GPU Dijkstra implementations. Their work 
addresses graphs with over 11 million vertices using 
2048 GPUs, demonstrating scalability beyond single-
GPU implementations. Prihozhy and Karasik2 conducted 
comprehensive comparisons of competing all-pairs shortest 
path algorithms for both sparse and dense graphs, providing 
valuable insights into algorithm selection criteria. However, 
their approach requires distributed computing clusters, 
whereas our work focuses on optimizing single-GPU 
performance through tiling and shared memory techniques.

Tang et al. [9] developed GPU-accelerated all-pairs 
shortest path algorithms specifically for stochastic road 
networks, reporting “thousands of times improvement” in 
acceleration for real-world navigation applications. While 
their work targets similar applications to ours, their focus 
on stochastic networks with uncertainty handling differs 
from our deterministic graph optimization approach. Recent 
research has explored innovative GPU-based methods for 
related graph problems. Spridon et al. [10] introduced novel 
GPU-based approaches for the generalized maximum flow 
problem, demonstrating the continued evolution of GPU 
graph algorithm development. These advances in related 
graph problems inform optimization strategies applicable 
to shortest path algorithms.

Traditional GPU implementations of Bellman-Ford 
have focused on basic parallelization strategies. Agarwal 
and Dutta [11] introduced flag-based optimization for GPU 
Bellman-Ford, which serves as a foundation for our strided 
with flag implementation. However, recent literature shows 
limited advancement in Bellman-Ford GPU optimization 
techniques beyond basic parallelization patterns, indicating 
a gap that our comprehensive optimization analysis 
addresses.

Early GPU implementations by Harish and Narayanan 
[1] demonstrated the potential for GPU acceleration of 
graph algorithms, achieving significant speedups for 

2 Prihozhy A.A., & Karasik O.N. (2024). Competing all-pairs 
shortest paths algorithms for sparse/dense graphs: implementation 
and comparison. Available at: http://dx.doi.org/10.21122/2309-
4923-2024-4-4-12, free. English lang. (accessed: 06.06.2025).

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://dx.doi.org/10.21122/2309-4923-2024-4-4-12
http://dx.doi.org/10.21122/2309-4923-2024-4-4-12
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single-source shortest path computation on graphs with 
millions of vertices. Recent work by Song [12] explored 
high-performance parallelization of Dijkstra algorithm 
using hybrid Message Passing Interface and CUDA 
approaches, demonstrating the continued relevance of 
GPU acceleration for shortest path problems. However, 
these implementations focused on single-source shortest 
paths, while our parallel all-pairs approach addresses the 
inherent limitations of parallelizing Dijkstra sequential 
vertex selection process.

Contemporary research has expanded GPU shortest 
path applications beyond traditional graph problems. 
Bengtsson et al. [13] applied GPU-accelerated routing to 
warehouse optimization problems, combining clustering 
and dynamic systems modeling with GPU-based 
shortest path computation. Kumar et al. [14] investigated 
Artificial Intelligent based navigation in quasi-structured 
environments, highlighting the growing importance of 
GPU-accelerated path planning in robotics and autonomous 
systems. These applications demonstrate the practical 
relevance of efficient GPU shortest path implementations 
across diverse domains.

The effectiveness of shared memory utilization in GPU 
graph algorithms has been demonstrated across multiple 
studies [6]. However, comprehensive analysis of the trade-
offs between different memory optimization techniques for 
shortest path algorithms remains limited in recent literature. 
Our work contributes detailed performance analysis of 
shared memory vs. global memory approaches specifically 
for Floyd-Warshall tiled implementations.

Recent research has emphasized the importance 
of achieving performance portability across different 
computing architectures. Morgan et al. [15] investigated 
simplified approaches to achieve parallel performance and 
portability across CPU and GPU architectures, highlighting 
the challenges of maintaining efficiency across diverse 
hardware platforms. This work underscores the importance 
of architecture-specific optimizations like those explored 
in our study.

Harris [7] introduced grid-stride loops as a fundamental 
CUDA optimization pattern. While this technique has been 
applied to various GPU algorithms, systematic evaluation 
of its effectiveness for different shortest path algorithm 
variants has not been thoroughly investigated in recent 
literature.

Our Contribution

Our work advances the current state of GPU 
shortest path algorithm research through several distinct 
contributions that address gaps in the existing literature. 
Unlike recent studies that focus on individual algorithms or 
specific application domains, we provide a comprehensive 
systematic comparison across three fundamental shortest 
path algorithms using consistent experimental methodology 
and hardware platforms. This multi-algorithm approach 
enables direct performance comparisons and reveals 
algorithm-specific optimization opportunities that have 
not been thoroughly explored in recent literature.

We implement and evaluate multiple optimization 
strategies for each algorithm, progressing from basic 

parallel implementations to sophisticated techniques that 
combine algorithmic and architectural optimizations. This 
progressive optimization evaluation methodology provides 
detailed insights into the incremental effects of different 
optimization techniques which has been limited in recent 
publications that typically focus on single optimization 
approaches.

Our study contributes quantitative analysis of the 
effectiveness of specific optimization techniques, including 
flag-based early termination for Bellman-Ford, tiled 
computation for Floyd-Warshall, and shared memory 
utilization across algorithms. The systematic evaluation of 
these techniques provides performance trade-off analysis 
that has been absent from recent literature.

We demonstrate that optimal GPU implementation 
strategies vary significantly across different shortest path 
algorithms, providing practical guidance for algorithm 
selection and optimization in real-world applications. This 
algorithm-specific optimization insight fills a gap in current 
literature where optimization strategies are often presented 
as universally applicable without considering algorithm-
specific characteristics.

While prior work has established the foundation for 
GPU shortest path algorithms, our comprehensive analysis 
of optimization strategies and their trade-offs provides 
novel insights that advance the current state of knowledge 
in this domain.

Experimental Setup

All experiments were conducted on an NVIDIA 
GeForce RTX 2080 Ti with CUDA compute capability 7.5, 
CUDA driver version 10.1, 4352 CUDA cores, and 11 GB 
GDDR6 memory. This section describes the algorithms 
and their variants that were used for benchmarking. For 
each algorithm, we implemented multiple variants with 
different optimization approaches, ranging from basic 
parallel implementations to more sophisticated techniques 
with memory optimizations and algorithmic enhancements. 
All implementation code is available at platform GitHub1.

Experimental Setup: Bellman-Ford algorithm
For the Bellman-Ford algorithm evaluation, we used 

the DIMACS Road Networks Dataset2, which provides 
real-world road network graphs suitable for single-source 
shortest path analysis. The dataset contains various road 
networks with different scales, allowing us to evaluate 
performance across graphs of varying sizes and densities. 
All Bellman-Ford variants use Compressed Sparse Row 
(CSR) format to efficiently handle large graphs in GPU 
global memory [2].

One thread per vertex: This implementation assigns 
one thread to each vertex, where each thread is responsible 
for relaxing all outgoing edges from its assigned vertex 
[1]. It uses two distance arrays: previousDistance 

1 CUDA Parallel Shortest Path: Implementation. Available at: 
https://github.com/deepbodra97/cuda-parallel-shortest-path, free. 
English lang. (accessed: 05.06.2025).

2 9th DIMACS Implementation Challenge: Shortest Paths. 
Available at: http://www.diag.uniroma1.it/~challenge9/download.
shtml, free. English lang. (accessed: 03.06.2025).

https://github.com/deepbodra97/cuda-parallel-shortest-path
http://www.diag.uniroma1.it/~challenge9/download.shtml
http://www.diag.uniroma1.it/~challenge9/download.shtml
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stores costs from the previous iteration, while distance 
accumulates updated costs in the current iteration. This 
dual-array approach prevents threads from reading updated 
values within the same iteration to maintain algorithmic 
correctness. After each iteration, values are copied from 
distance to previousDistance. A challenge arises when 
multiple threads attempt to update the same destination 
vertex simultaneously, creating race conditions. We 
address this using CUDA atomicMin operation, which 
ensures thread-safe updates by atomically selecting the 
minimum value among competing writes1. The kernel 
is launched |V| – 1 times, with each launch handling one 
complete iteration of edge relaxations. The time complexity 
is O ((|V| – 1) × (|E|/P + sync_cost)), where P = min(|V|, 
GPU cores), as each thread processes edges in parallel 
but synchronization is required between iterations. Space 
complexity remains O (|V|2 + |E|) for the all-pairs distance 
matrix and CSR graph representation.

Strided: The one thread per vertex implementation 
scalability is limited by the maximum number of threads a 
GPU device supports. The strided version overcomes this 
limitation using a grid-stride loop pattern [7], where each 
thread processes multiple vertices depending on the grid 
size and total vertex count. In this approach, a thread with 
ID tid processes vertices at positions tid, tid + stride, tid +  
+ 2 × stride ,  and so forth, where stride equals 
blockDimension × gridDimension. This pattern allows the 
same kernel to handle graphs of arbitrary size by using 
fewer threads than vertices [1]. The optimal number of 
threads for a given graph can be determined experimentally, 
balancing resource utilization with memory bandwidth. 
Time complexity becomes O ((|V| – 1) × (⎡|V|/P⎤ ×  
× avg_degree + sync_cost)) where avg_degree = |E|/|V|, as 
each thread now processes multiple vertices sequentially 
within each iteration. The load balancing factor ranges from 
O (1) for uniform degree distribution to O (max_degreee/
avg_degree) for skewed distributions, maintaining the same 
O (|V|2 + |E|) space complexity.

Strided with flag [11]: Both previous implementations 
suffer from inefficient work distribution, as threads process 
vertices whose distances changed since the previous 
iteration. The flag-based optimization addresses this 
by tracking which vertices had distance updates in the 
previous iteration. We maintain a Boolean flag array of size 
|V|, where flag[i] indicates whether vertex i--th distance 
changed in the previous iteration. During the distance 
update phase, if previousDistance[i] > distance[i], we set 
flag[i] = true. In the subsequent iteration, threads only 
process outgoing edges from vertices with flag[i] = true, 
significantly reducing unnecessary computations [11]. The 
flag is reset to false when a vertex edges are processed, 
preparing for the next iteration. The time complexity per 
iteration i becomes O (Active_vertices(i) × avg_degree/P), 
where Active_vertices(i) represents vertices with updated 
distances. In the expected case, this yields O (|E| × H_|V|/P) 
where H_|V| is the |V|th harmonic number. Space complexity 
remains O (|V|2 + |E|) plus O (|V|) for the flag array.

1 CUDA C++ Programming Guide. Available at: https://docs.
nvidia.com/cuda/cuda-c-programming-guide/, free. English lang. 
(accessed: 02.06.2025).

Experimental Setup: Dijkstra algorithm
For Dijkstra algorithm evaluation, we used Stanford’s 

Peer-to-peer network dataset [16], which is well-suited 
for evaluating all-pairs shortest path computations in 
moderately-sized graphs. The graph is represented using 
an adjacency matrix format for efficient neighbor lookups 
during shortest path computation.

Dijkstra algorithm presents parallelization challenges 
due to its inherently sequential nature of selecting the 
minimum unvisited vertex [1, 3, 17]. Instead of parallelizing 
the core algorithm logic, we implement a parallel all-pairs 
approach where each thread computes shortest paths from 
a different source vertex. Each thread runs an instance of 
Dijkstra algorithm using a different source vertex. Since 
GPU threads cannot efficiently maintain individual priority 
queues due to memory constraints, each thread uses a 
simple array-based approach to find the next minimum 
unvisited vertex [3]. The kernel assigns one thread per 
source vertex, with thread src computing shortest paths 
from vertex src to all other vertices. Each thread maintains 
its own visited array and distance array within the global 
distance matrix. This approach achieves parallelism across 
different source vertices while preserving the sequential 
correctness of individual Dijkstra computations. Our 
approach executes |V| independent Dijkstra instances in 
parallel, yielding time complexity O ((|V|2 + |E|) × |V|/P) 
where each thread performs O (|V|2 + |E|) work for its 
assigned source. Space complexity is O (|V|2 + |V| × P) 
for the distance matrix and per-thread visited arrays, with 
optimal performance when P = |V|.

Experimental Setup: Floyd-Warshall algorithm
For the Floyd-Warshall algorithm evaluation, we used 

Stanford’s Peer-to-peer network dataset [16] and the graph 
is represented using an adjacency matrix format.

One thread per edge: This implementation provides 
maximum parallelism by assigning one thread to each 
edge in the graph [9]. Using a 2D thread grid, thread (i, j) 
handles the edge from vertex i to vertex j. In each of the  
iterations |V|, every thread checks whether using the current 
intermediate vertex k provides a shorter path. This approach 
achieves excellent memory coalescing as threads in the 
same warp access consecutive memory locations in the 
distance matrix [10]. However, it requires launching |V|2 
threads, limiting scalability for very large graphs due to 
GPU resource constraints. Time complexity is O (|V|3/P), 
where P = min(|V|2, GPU cores), as |V|2 threads perform 
O (1) work per iteration across |V| iterations. This achieves 
optimal parallelization when sufficient GPU cores are 
available. Space complexity remains O (|V|2) for the 
distance matrix with optimal memory coalescing patterns

One thread per edge with shared memory: This 
variant optimizes the one thread per edge approach by 
reducing global memory accesses through shared memory 
[6, 18] utilization. In iteration k, threads in the same row 
all access distance[i][k], creating an opportunity for shared 
memory optimization. We use 1D thread blocks where the 
first thread in each block loads distance[i][k] into shared 
memory, making it available to all threads in the block 
through shared memory broadcast [6]. This reduces global 
memory bandwidth requirements, though synchronization 
overhead can limit performance gains. Time complexity 
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remains O (|V|3/P) but with reduced memory access latency 
due to shared memory utilization. Space complexity 
includes additional O (shared_memory_per_block) for 
cached data, though synchronization overhead may offset 
some performance benefits for smaller graphs.

One thread per vertex implementation: To improve 
scalability, the one thread per vertex implementation 
reduces thread count by assigning one thread per vertex 
rather than per edge. Each thread handles one row of the 
distance matrix, iterating through all potential destinations 
for its assigned source vertex. Thread i processes all edges 
from vertex i, checking each destination j to determine if 
routing through intermediate vertex k offers improvement. 
This approach requires fewer threads while maintaining 
reasonable parallelism, making it suitable for larger graphs. 
Time complexity becomes O (|V|3/P), where P = min(|V|, 
GPU cores), but each thread now performs O (|V|2) work 
across all iterations. This provides better scalability for 
large graphs by reducing thread count requirements while 
maintaining the same O (|V|2) space complexity for the 
distance matrix.

Tiled implementation: This implementation addresses 
memory bandwidth limitations by dividing the adjacency 
matrix into 2D tiles of size TILE_DIMENSION × TILE_
DIMENSION. At each iteration, tiles are processed in three 
phases. In phase 1, the primary tile (diagonal tile containing 
intermediate vertex) is processed using a single thread 
block, where all paths within this tile are updated using 
vertices from the same tile as intermediates. In phase 2, 
tiles sharing the same row or column as the primary tile are 
processed, where these tiles use vertices from the primary 
tile as intermediates, requiring data from both the primary 
tile and the current tile. In phase 3, the remaining tiles are 
processed using precomputed results from primary row and 
column tiles. This phase achieves maximum parallelism 
as all remaining tiles can be processed independently 
[5, 19, 20]. This approach ensures that each global 
memory location is accessed exactly once per iteration, 
significantly improving memory efficiency compared 
to the basic implementations. The time complexity 
becomes O (|V|2 + |V| × TILE_DIMENSION) through the 
three-phase approach: primary tile O (|V|), border tiles 
O (|V|), and interior tiles O (TILE_DIMENSION) with 
full parallelization [5]. Space complexity remains O (|V|2) 
with optimal tile size TILE_DIMENSION = √(GPU cores) 
minimizing total execution time.

Tiled with shared memory: This implementation 
enhances the basic tiled approach by utilizing shared 
memory [6] to cache frequently accessed data within each 
thread block. In phase 1, the primary tile data is loaded 
into shared memory once and reused for all computations 
within the tile, eliminating redundant global memory 
accesses. During phase 2, each thread block loads the 
relevant portion of the primary tile into shared memory 
alongside its tile data, enabling fast access to intermediate 
vertex information. In phase 3, thread blocks load data 
from their corresponding row and column tiles into shared 
memory, significantly reducing global memory bandwidth 
requirements as multiple threads access the same cached 
values. Time complexity improves to O (|V|2 + |V| × 
× TILE_DIMENSION/memory_speedup), where memory_

speedup ≈ 10–100 times from shared memory utilization 
[6]. Space complexity includes O (|V|2 + min(num_blocks 
× TILE_DIMENSION2, total_shared_memory)) for the 
distance matrix plus shared memory usage, representing 
the most optimized implementation combining algorithmic 
restructuring with memory hierarchy optimization.

Results and Analysis

The Bellman-Ford algorithm experiments were 
conducted on the DIMACS Road Networks dataset1, with 
performance measured across different graph sizes. Fig. 1 
shows the execution times for the three implementation 
variants across various datasets. The one thread per 
vertex implementation serves as the baseline, providing 
straightforward parallelization but facing scalability 
limitations for larger graphs.

The strided implementation shows mixed performance 
results: it runs slower than the baseline for small graphs due 
to the overhead of grid-stride loops [7], but demonstrates 
better scalability for larger graphs where the naive version 
becomes resource-constrained.

The strided with flag optimization delivers the 
most significant performance improvements, achieving 
approximately 2.8 times faster execution compared to the 
one thread per vertex implementation. This optimization 
proves highly effective because it eliminates unnecessary 
work by processing only vertices whose distances changed 
in the previous iteration [11]. For the largest dataset 
(Eastern USA with 3.6 million vertices and 8.8 million 
edges), the strided with flag variant completed in 409 s 
compared to 1137 s for the baseline implementation. The 
performance characteristics reveal that the flag optimization 
becomes increasingly beneficial as graph size grows, since 
larger graphs tend to have more vertices with unchanged 
distances in later iterations of the algorithm.

Dijkstra algorithm evaluation used Stanford’s Peer-to-
peer network dataset [16]. Table shows the performance 
comparison between CPU and GPU implementations. The 
parallel all-pairs GPU implementation achieved significant 
speedup over the serial CPU version, completing the p2p-
Gnutella04 dataset with 11K vertices and 40K edges in 
approximately 120 s compared to 24 minutes for the CPU 
implementation. However, the inherently sequential nature 
of Dijkstra algorithm limits the parallelization benefits 
compared to the other algorithms studied [1, 3].

The GPU implementation performance is constrained 
by the need for each thread to maintain its distance 
and visited arrays, along with the sequential process of 
finding minimum unvisited vertices within each thread 
computation. Despite these limitations, the GPU version 
still provides meaningful acceleration for all-pairs shortest 
path computation.

The Floyd-Warshall algorithm experiments demonstrate 
the most performance improvements among the three 
algorithms studied. Fig. 2 illustrates the execution times 
across different implementation variants and dataset sizes.

1 9th DIMACS Implementation Challenge: Shortest Paths. 
Available at: http://www.diag.uniroma1.it/~challenge9/download.
shtml, free. English lang. (accessed: 03.06.2025).
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The one thread per edge implementation achieves 
excellent performance for small to medium graphs 
due to maximum parallelization and good memory 
coalescing1. However, its scalability is limited by the 
requirement for |V|2 threads. The variant of one thread per 
edge implementation with shared memory shows some 
improvement through reduced global memory accesses [6], 
though synchronization overhead can limit gains.

The one thread per vertex implementation provides 
better scalability by reducing thread count, making it 
suitable for larger graphs while maintaining reasonable 
performance. However, the tiled implementations show the 
most significant improvements [5].

The tiled implementation using global memory 
outperforms all basic variants, running approximately 
4–6 times faster than the one thread per vertex version. The 
tiled implementation with shared memory delivers the best 
overall performance, achieving roughly 8 times speedup 
over the baseline and approximately 2 times improvement 
over the global memory tiled version [6].

For the p2p-Gnutella04 dataset, the tiled implementation 
with shared memory completed in 2.38 s compared to over 

1 CUDA C++ Programming Guide. Available at: https://docs.
nvidia.com/cuda/cuda-c-programming-guide/, free. English lang.  
(accessed: 02.06.2025).

30 s for the one thread per vertex variant. This improvement 
demonstrates the effectiveness of combining algorithmic 
restructuring (tiling) with memory hierarchy optimization 
(shared memory) [5, 6].

When comparing across algorithms, Floyd-Warshall 
shows the greatest potential for GPU acceleration due 
to its inherently parallel structure and regular memory 
access patterns [17]. The algorithm O (|V|3) complexity 
makes GPU acceleration particularly valuable for reducing 
computation time.

Bellman-Ford demonstrates good parallelization 
potential, especially with the flag optimization that reduces 
unnecessary work [11]. The algorithm iterative nature and 
edge-based parallelism translate well to GPU architectures 
[1, 2].

Dijkstra algori thm shows the most  l imited 
parallelization benefits due to its inherently sequential 
vertex selection process [1, 3]. However, the all-pairs 
parallel approach still provides meaningful acceleration 
over serial CPU implementations.

The results highlight the importance of algorithm-
specific optimizations: flag-based early termination for 
Bellman-Ford [11], tiled computation with shared memory 
for Floyd-Warshall [5, 6], and parallel source processing 
for Dijkstra. Memory access patterns and work distribution 
significantly impact GPU performance, with regular access 
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Fig. 1. Execution time comparison for Bellman-Ford variants on DIMACS Road Networks Dataset

Table. Execution time comparison for Dijkstra on Stanford’s Peer-to-peer network dataset

Dataset Number of Vertices Number of Edges CPU GPU

p2p-Gnutella04 10,876 39,994 24 mins 119.941 s
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patterns and balanced workloads yielding the best results 
[1, 2, 21, 22]1.

A common pattern is that all GPU implementations, 
even on the largest datasets, outperform the corresponding 
serial CPU versions on the smallest datasets used for 
experimenting. This demonstrates the computational 
advantage that GPU parallelization provides to enable the 
processing of much larger problem instances in less time 
than traditional approaches require for smaller problems.

Future Work

Several directions emerge for extending this research, 
including investigating advanced graph representations, 
such as ELL format to address control divergence issues 
[7], developing multi-GPU implementations for very large 
graphs [8], and adapting algorithms for dynamic graphs 
where edges are modified during computation. Additional 
opportunities include implementing memory-efficient 
techniques like staged loading for graphs exceeding 
GPU capacity, exploring hybrid CPU-GPU approaches to 
optimize resource utilization, and developing application-
specific optimizations tailored to domains such as 
transportation or social networks. Comparative analysis 

1 CUDA C++ Programming Guide. Available at: https://docs.
nvidia.com/cuda/cuda-c-programming-guide/, free. English lang.  
(accessed: 02.06.2025).

with alternative parallel platforms such as OpenCL or 
distributed computing frameworks would provide broader 
insights into parallel shortest path computation trade-offs 
across different architectures.

Conclusion

This paper presented an evaluation of GPU 
implementations for three fundamental shortest path 
algorithms: Bellman-Ford, Dijkstra, and Floyd-Warshall 
using Compute Unified Device Architecture. Through 
systematic implementation and optimization of multiple 
variants, we demonstrated significant performance benefits 
of GPU acceleration for graph processing. Floyd-Warshall 
achieved the most dramatic improvements with the tiled 
shared memory implementation delivering approximately 
8 times speedup, while Bellman-Ford showed substantial 
acceleration through flag-based optimization achieving 
2.8 times performance improvement. Although Dijkstra 
algorithm exhibited more limited parallelization benefits 
due to its sequential nature, it still provided meaningful 
acceleration over CPU implementations. The results reveal 
that GPU implementations on large datasets consistently 
outperform CPU versions on small datasets, highlighting 
the transformative potential of parallel computing for 
shortest path problems and enabling practical processing 
of real-world graph sizes previously computationally 
prohibitive.
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