HAYYHO-TEXHUYECKMI BECTHUK MHOOPMALIMOHHBIX TEXHOOM I, MEXAHUKI 1 OMTUKN

° CEeHTABPb—OKTAGPL 2025 Tom 25 N2 5 http://ntv.ifmo.ru/ 4 AVUHO-TEXHMYECKMM BECTHMK
IIITMO SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS “Hm“pMA““““HMX IEXH“I“I"""' MEXAH“K“ “ m"“m
September—October 2025 Vol. 25 No 5 http://ntv.ifmo.ru/en/
ISSN 2226-1494 (print) ISSN 2500-0373 (online)

doi: 10.17586/2226-1494-2025-25-5-866-875

Accelerating and analyzing performance of shortest path algorithms on GPU
using CUDA platform: Bellman-Ford, Dijkstra, and Floyd-Warshall algorithms
Deep Bodra!®™, Sushil Khairnar?2

I Harrisburg University of Science and Technology, Harrisburg, 17101, USA
2 Virginia Tech, Virginia, 24061, USA

1 Deepbodra97@gmail.com™, https://orcid.org/0009-0009-4173-2447

2 sushilk@vt.edu, https://orcid.org/0009-0006-5192-0175

Abstract

The computational demands of the shortest path algorithms on large-scale graphs with millions of vertices and edges pose
significant challenges for serial implementations, often requiring hours of execution time even on powerful CPUs. This
paper evaluates Graphic Processing Units implementations of three fundamental shortest path algorithms — Bellman-
Ford, Dijkstra, and Floyd-Warshall using NVIDIA CUDA platform. We implemented and compared multiple variants
of each algorithm, starting with basic parallel approaches and applying various optimization techniques, including grid-
stride loops, shared memory utilization, memory coalescing, and algorithm-specific enhancements such as flag-based
early termination for Bellman-Ford and tiled computation for Floyd-Warshall. Our study provides performance analysis
comparing different optimization strategies and their effectiveness across various graph datasets.
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AHHOTANMSA

BrranciurensHble TpeOOBaHMS K aIrOPUTMaM ITOMCKa KpaTYalIiero myTH Ha 6oipmux rpadax ¢ MHIUIMOHAMHA
BEpIINH U pebep NMPEeACTaBISIOT CO00H 3HAYNTEIBHYIO IPo0dIIeMy JUIS TOCIIeI0BATEIbHBIX peali3alyii, 4acTo Tpedys
MHOT0YaCOBOTO BPEMEHH BBINOJIHEHHS Ja)Ke C MOMOIIbI0 MOIIHBIX MponeccopoB. B paboTe BhIIOIHEHA OI[CHKA
peanuzanuy Ha rpaduyecKux mpoueccopax Tpex (GpyHIaMEHTaJIbHBIX aJIFOPUTMOB ITOMCKA KpaT4yaillero myTu:
Bennmana—®opna, Heiiketpsl u @noiina—Yopuenna ¢ ucnons3oanueM miargopmel NVIDIA CUDA. IIposeneno
CpaBHEHHE HECKOJIbKHX BAPHAHTOB Ka)KAOTO aNrOPUTMa, OT 0A30BBIX MapaUICIbHBIX MOIXOAOB A0 CIEIH(UISCKIX
aITOPUTMOB yiyumeHus. VccaenoBansl 6a30BbIe METOABl ONTHMH3ANNN, BKIIOYAs IUKIBI C MIAaTOM CETKH,
HCTIONB30BaHHE OOIIeH MaMsATH, 00beJHHEHNE TaMATH. Takke BHINOIHCH aHAIN3 aJITOPUTMOB YIy4dIICHHUS, TAKUX KaK
paHHee 3aBepIIeHre Ha ocHOBe (raro it anroputma bemmana—®opaa u TaiioBble BEIYUCICHHS Ul AITOPHTMA

© Bodra D., Khairnar S., 2025

866 Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MeXaHUKN 1 onTukn, 2025, Tom 25, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5


http://ntv.ifmo.ru/
http://ntv.ifmo.ru/en/
mailto:Deepbodra97@gmail.com
https://orcid.org/0009-0009-4173-2447
mailto:sushilk@vt.edu
https://orcid.org/0009-0006-5192-0175
mailto:Deepbodra97@gmail.com
https://orcid.org/0009-0009-4173-2447
mailto:sushilk@vt.edu
https://orcid.org/0009-0006-5192-0175

D. Bodra, S. Khairnar

Onoiiga—Yopiemia. B ucciaeqoBanuy npeacTaBieH aHaIu3 MPOU3BOUTENLHOCTH, BBITIOJIHEHO CPAaBHEHUE PA3INIHbBIX
CTpaTeruii ONTHMHU3ALUH U UX dPPEKTUBHOCTH HA Pa3IMYHBIX HA0Opax rpadOBbIX TaHHBIX.

KnroueBble ciioBa

BeruuciieHust Ha GPU, minardpopma CUDA, anropuTMsl OMCKa KpaTyaifiiero myTH, napajuieibHble aJrOpUTMBbI,
anroputmsl rpados, berman—Dopa, [eiikcrpa, Oroiia—Yopuies, OnTUMH3AIHS TPOU3BOAUTEIbHOCTH

Cecepliaka ais nuruposanusi: boxpa ., Xaiiprap C. Yckopenue u aHanu3 NPOU3BOIUTEIBHOCTH aJITOPUTMOB TIOMCKA
kpatuaiimero myta Ha GPU ¢ ucnons3oBanuem miaardpopmel CUDA: anroputmsl bennmana—®opaa, JedkeTpsl u
Oroina—Yopmrenna / HaydHO-TeXHHYECKUI BECTHUK WH(POPMALIMOHHBIX TEXHOJIOTHHA, MEXaHUKH U oNTHKH. 2025.
T. 25, Ne 5. C. 866875 (na anr. s13.). doi: 10.17586/2226-1494-2025-25-866-875

Introduction

Shortest path algorithms have applications across
domains including transportation networks, communication
systems, social network analysis, and Very Large-Scale
Integration chip design [1]. These algorithms solve the
problem of finding the minimum cost path between
vertices in weighted graphs, which is required in real-world
scenarios such as GPS navigation systems to find optimal
routes, network protocols to determine efficient data
transmission paths, and circuit designers to optimize signal
routing. The computational complexity of the problem
becomes challenging as graph sizes grow to millions of
vertices and edges, commonly encountered in modern
applications, making serial implementations impractical
for time-sensitive applications [1, 2].

Modern Graphics Processing Units (GPUs) contain
many cores capable of executing operations in parallel
which make them suitable for algorithms that can exploit
data parallelism. However, parallelizing shortest path
algorithms on GPU presents unique challenges including
irregular memory access patterns, varying computational
loads across threads, and complex data dependencies that
can limit parallel efficiency [1, 2]. The inherent nature
of shortest path algorithms can affect their suitability for
GPU implementation. Bellman-Ford can handle negative
edge weights but requires multiple iterations, Dijkstra
provides better performance for non-negative weights but
has inherent sequential dependencies, and Floyd-Warshall
computes all-pairs shortest paths with high computational
complexity [3].

This paper presents a comprehensive study of GPU
implementations for three fundamental shortest path
algorithms using Compute Unified Device Architecture
(CUDA). We implement and evaluate multiple optimization
strategies for each algorithm, progressing from basic
parallel approaches to sophisticated techniques including
memory optimization, algorithmic enhancements, and
architecture-specific optimizations. Our evaluation focuses
on understanding the performance characteristics and trade-
offs of different implementation approaches across various
graph datasets.

Background of the problem

The Bellman-Ford algorithm finds the shortest paths
from a source vertex to all other vertices in a weighted
graph [2]. The key advantage of Bellman-Ford over
Dijkstra algorithm is its ability to detect negative cycles
and handle graphs containing negative cycles reachable
from the source vertex [4]. The algorithm performs a series

of relaxation and iteratively improves distance estimates
until optimal paths are found. For a graph with |V] vertices,
the algorithm performs |V] — 1 iterations, where each of
iteration relaxes all edges and updates distance estimates
if a shorter path is discovered [2]. Since the order of edge
relaxation within iteration does not affect correctness,
parallelization can be achieved by allowing multiple edges
to be processed simultaneously.

When applied to the all-pairs shortest path problem,
Bellman-Ford must be executed |V] times, once for each
source vertex. For number of edges |E|, the sequential
time complexity becomes O (|V]? x |E]), as each of the |V]
source vertices require O (|V] x |E]) time for single-source
computation.

The space complexity for storing all-pairs distances
is O (|V)?) for the distance matrix, plus O (|V] + |E|) for
the graph representation, yielding total space complexity
O (|V)? + |E]). The answer size is O (|V)?) for distance values
only, or O (|V]%) if complete path information is stored for
all vertex pairs [2].

Dijkstra algorithm solves the single-source shortest path
problem by maintaining a priority queue of vertices ordered
by their current shortest distance estimate and greedily
selects the vertex with minimum distance for processing.
The serial version uses a min-heap to extract the closest
unvisited vertex, and then relaxes all outgoing edges from
that vertex. This inherently sequential process of selecting
the next minimum vertex poses significant challenges for
parallelization [1, 3]. However, parallel versions can be
implemented by running multiple instances simultaneously,
computing shortest paths from different source vertices.
For all-pairs shortest path computation, Dijkstra algorithm
must be executed |V] times, once from each source vertex.

The sequential time complexity becomes O (|V] % (|V] +
+ |E|) log,|V]), representing | V] executions of single-source
Dijkstra with O ((|V] + |E]) log,|V]) complexity each. The
space complexity requires O (|V]2) for storing the complete
distance matrix, plus O(|V]) for the priority queue and
temporary arrays during each execution, yielding total
space complexity O (|V]?). The answer size is O (|V]?) for
distance information, or O (|V]?) when complete shortest
path trees are maintained for all source vertices [2].

The Floyd-Warshall’s algorithm computes shortest
paths between all pairs of vertices in a weighted graph [2].
It can handle negative edge weights but not negative cycles.
The algorithm employs dynamic programming, considering
each vertex as an intermediate point in potential shortest
paths. The algorithm executes |V] iterations, where iteration
k considers vertex k as an intermediate vertex for all
vertex pairs (7, j). For each pair, it checks whether the path
i — k — j offers a shorter distance than the current best path
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from i to j [3]. This structure makes Floyd-Warshall highly
suitable for parallelization, as all pairwise distance updates
(within each iteration) can be performed independently.
Floyd-Warshall is inherently designed for the all-pairs
shortest path problem. The sequential time complexity
is O (|V]3), as it performs |V] iterations, each examining
all |V]2 vertex pairs for potential improvement through
the current intermediate vertex. The space complexity
is O (|V]?) for storing the distance matrix which directly
represents the shortest distances between all vertex pairs.
The answer size is exactly O (|V]2) for distance information,
or O (|V]3) when complete path reconstruction information
is maintained. Unlike Bellman-Ford and Dijkstra, Floyd-
Warshall complexity does not scale with the number of
edges |E|, making it particularly efficient for dense graphs
where |E| approaches |V]? [5, 6].

CUDA Computing

GPUs feature a massively parallel architecture designed
for high-throughput computation!. Unlike CPUs with few
powerful cores optimized for sequential processing, modern
GPUs contain thousands of smaller cores that excel at
executing the same operation across multiple data elements
simultaneously. This Single Instruction, Multiple Data
architecture makes GPUs particularly effective for data-
parallel algorithms!.

CUDA provides a programming framework for general-
purpose GPU computing developed by NVIDIA. In CUDA,
parallel work is organized into kernels — functions
executed simultaneously by many threads. Threads are
grouped into blocks, and blocks are organized into a grid
structure. This hierarchical organization enables efficient
resource management and communication patterns!.

The CUDA programming model encompasses several
key concepts relevant to this work. The thread hierarchy
organizes individual threads that execute kernel code
into blocks that can share memory and synchronize
operations. The memory hierarchy provides different
levels of storage including global memory with large
capacity but high latency, shared memory that offers
fast access but limited capacity per block, and registers
that provide the fastest access but are limited per thread!
Grid-stride loops represent a programming pattern that
allows kernels to process datasets larger than the number
of available threads. Atomic operations provide hardware-
supported mechanisms for thread-safe memory updates,
which are crucial for avoiding race conditions in parallel
algorithms [1].

Challenges
Implementation

Implementing graph algorithms on GPUs presents
several significant challenges [3] that have been extensively
documented in the literature. Graph traversal often results
in irregular memory access patterns that can substantially
reduce GPU efficiency, as the hardware is optimized for
coalesced memory accesses [6, 7]. Load balancing presents
another critical challenge, as vertices may have vastly
different degrees, leading to uneven work distribution

in GPU Graph Algorithm

I CUDA C++ Programming Guide. Available at: https://docs.
nvidia.com/cuda/cuda-c-programming-guide/, free. English lang.
(accessed: 02.06.2025).

across threads and resulting in some threads completing
their work much earlier than others [6, 7]. Synchronization
requirements in many graph algorithms necessitate
coordination between threads, which can potentially limit
the achievable parallelism and introduce performance
bottlenecks [1, 3]. Memory bandwidth limitations arise
when large graphs exceed GPU memory capacity or create
memory bandwidth bottlenecks that constrain overall
performance [3]. Understanding these fundamental
challenges is essential for developing effective GPU
implementations of shortest path algorithms and forms
the foundation for the optimization strategies explored in
this work.

Related Works

Yang et al. [8] proposed a Fast APSP algorithm that
combines Floyd-Warshall with Dijkstra algorithms for
large sparse graphs, achieving an average speedup of
16.97 times compared to CPU Dijkstra and 7.09 times
compared to GPU Dijkstra implementations. Their work
addresses graphs with over 11 million vertices using
2048 GPUs, demonstrating scalability beyond single-
GPU implementations. Prihozhy and Karasik? conducted
comprehensive comparisons of competing all-pairs shortest
path algorithms for both sparse and dense graphs, providing
valuable insights into algorithm selection criteria. However,
their approach requires distributed computing clusters,
whereas our work focuses on optimizing single-GPU
performance through tiling and shared memory techniques.

Tang et al. [9] developed GPU-accelerated all-pairs
shortest path algorithms specifically for stochastic road
networks, reporting “thousands of times improvement” in
acceleration for real-world navigation applications. While
their work targets similar applications to ours, their focus
on stochastic networks with uncertainty handling differs
from our deterministic graph optimization approach. Recent
research has explored innovative GPU-based methods for
related graph problems. Spridon et al. [10] introduced novel
GPU-based approaches for the generalized maximum flow
problem, demonstrating the continued evolution of GPU
graph algorithm development. These advances in related
graph problems inform optimization strategies applicable
to shortest path algorithms.

Traditional GPU implementations of Bellman-Ford
have focused on basic parallelization strategies. Agarwal
and Dutta [11] introduced flag-based optimization for GPU
Bellman-Ford, which serves as a foundation for our strided
with flag implementation. However, recent literature shows
limited advancement in Bellman-Ford GPU optimization
techniques beyond basic parallelization patterns, indicating
a gap that our comprehensive optimization analysis
addresses.

Early GPU implementations by Harish and Narayanan
[1] demonstrated the potential for GPU acceleration of
graph algorithms, achieving significant speedups for

2 Prihozhy A.A., & Karasik O.N. (2024). Competing all-pairs
shortest paths algorithms for sparse/dense graphs: implementation
and comparison. Available at: http://dx.doi.org/10.21122/2309-
4923-2024-4-4-12, free. English lang. (accessed: 06.06.2025).
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single-source shortest path computation on graphs with
millions of vertices. Recent work by Song [12] explored
high-performance parallelization of Dijkstra algorithm
using hybrid Message Passing Interface and CUDA
approaches, demonstrating the continued relevance of
GPU acceleration for shortest path problems. However,
these implementations focused on single-source shortest
paths, while our parallel all-pairs approach addresses the
inherent limitations of parallelizing Dijkstra sequential
vertex selection process.

Contemporary research has expanded GPU shortest
path applications beyond traditional graph problems.
Bengtsson et al. [13] applied GPU-accelerated routing to
warehouse optimization problems, combining clustering
and dynamic systems modeling with GPU-based
shortest path computation. Kumar et al. [14] investigated
Artificial Intelligent based navigation in quasi-structured
environments, highlighting the growing importance of
GPU-accelerated path planning in robotics and autonomous
systems. These applications demonstrate the practical
relevance of efficient GPU shortest path implementations
across diverse domains.

The effectiveness of shared memory utilization in GPU
graph algorithms has been demonstrated across multiple
studies [6]. However, comprehensive analysis of the trade-
offs between different memory optimization techniques for
shortest path algorithms remains limited in recent literature.
Our work contributes detailed performance analysis of
shared memory vs. global memory approaches specifically
for Floyd-Warshall tiled implementations.

Recent research has emphasized the importance
of achieving performance portability across different
computing architectures. Morgan et al. [15] investigated
simplified approaches to achieve parallel performance and
portability across CPU and GPU architectures, highlighting
the challenges of maintaining efficiency across diverse
hardware platforms. This work underscores the importance
of architecture-specific optimizations like those explored
in our study.

Harris [7] introduced grid-stride loops as a fundamental
CUDA optimization pattern. While this technique has been
applied to various GPU algorithms, systematic evaluation
of its effectiveness for different shortest path algorithm
variants has not been thoroughly investigated in recent
literature.

Our Contribution

Our work advances the current state of GPU
shortest path algorithm research through several distinct
contributions that address gaps in the existing literature.
Unlike recent studies that focus on individual algorithms or
specific application domains, we provide a comprehensive
systematic comparison across three fundamental shortest
path algorithms using consistent experimental methodology
and hardware platforms. This multi-algorithm approach
enables direct performance comparisons and reveals
algorithm-specific optimization opportunities that have
not been thoroughly explored in recent literature.

We implement and evaluate multiple optimization
strategies for each algorithm, progressing from basic

parallel implementations to sophisticated techniques that
combine algorithmic and architectural optimizations. This
progressive optimization evaluation methodology provides
detailed insights into the incremental effects of different
optimization techniques which has been limited in recent
publications that typically focus on single optimization
approaches.

Our study contributes quantitative analysis of the
effectiveness of specific optimization techniques, including
flag-based ecarly termination for Bellman-Ford, tiled
computation for Floyd-Warshall, and shared memory
utilization across algorithms. The systematic evaluation of
these techniques provides performance trade-off analysis
that has been absent from recent literature.

We demonstrate that optimal GPU implementation
strategies vary significantly across different shortest path
algorithms, providing practical guidance for algorithm
selection and optimization in real-world applications. This
algorithm-specific optimization insight fills a gap in current
literature where optimization strategies are often presented
as universally applicable without considering algorithm-
specific characteristics.

While prior work has established the foundation for
GPU shortest path algorithms, our comprehensive analysis
of optimization strategies and their trade-offs provides
novel insights that advance the current state of knowledge
in this domain.

Experimental Setup

All experiments were conducted on an NVIDIA
GeForce RTX 2080 Ti with CUDA compute capability 7.5,
CUDA driver version 10.1, 4352 CUDA cores, and 11 GB
GDDR6 memory. This section describes the algorithms
and their variants that were used for benchmarking. For
each algorithm, we implemented multiple variants with
different optimization approaches, ranging from basic
parallel implementations to more sophisticated techniques
with memory optimizations and algorithmic enhancements.
All implementation code is available at platform GitHub!.

Experimental Setup: Bellman-Ford algorithm

For the Bellman-Ford algorithm evaluation, we used
the DIMACS Road Networks Dataset?, which provides
real-world road network graphs suitable for single-source
shortest path analysis. The dataset contains various road
networks with different scales, allowing us to evaluate
performance across graphs of varying sizes and densities.
All Bellman-Ford variants use Compressed Sparse Row
(CSR) format to efficiently handle large graphs in GPU
global memory [2].

One thread per vertex: This implementation assigns
one thread to each vertex, where each thread is responsible
for relaxing all outgoing edges from its assigned vertex
[1]. It uses two distance arrays: previousDistance

I CUDA Parallel Shortest Path: Implementation. Available at:
https://github.com/deepbodra97/cuda-parallel-shortest-path, free.
English lang. (accessed: 05.06.2025).

2 9th DIMACS Implementation Challenge: Shortest Paths.
Available at: http://www.diag.uniromal.it/~challenge9/download.
shtml, free. English lang. (accessed: 03.06.2025).

Hay4HO-TexXHU4eCcKuii BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MexXaHUkn 1 ontukun, 2025, Tom 25, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 5

869


https://github.com/deepbodra97/cuda-parallel-shortest-path
http://www.diag.uniroma1.it/~challenge9/download.shtml
http://www.diag.uniroma1.it/~challenge9/download.shtml

Accelerating and analyzing performance of shortest path algorithms on GPU using CUDA platform...

stores costs from the previous iteration, while distance
accumulates updated costs in the current iteration. This
dual-array approach prevents threads from reading updated
values within the same iteration to maintain algorithmic
correctness. After each iteration, values are copied from
distance to previousDistance. A challenge arises when
multiple threads attempt to update the same destination
vertex simultaneously, creating race conditions. We
address this using CUDA atomicMin operation, which
ensures thread-safe updates by atomically selecting the
minimum value among competing writes!. The kernel
is launched |V] — 1 times, with each launch handling one
complete iteration of edge relaxations. The time complexity
is O ((|V]—=1) x (|E|/P + sync_cost)), where P = min(|V],
GPU cores), as each thread processes edges in parallel
but synchronization is required between iterations. Space
complexity remains O (|V]? + |E|) for the all-pairs distance
matrix and CSR graph representation.

Strided: The one thread per vertex implementation
scalability is limited by the maximum number of threads a
GPU device supports. The strided version overcomes this
limitation using a grid-stride loop pattern [7], where each
thread processes multiple vertices depending on the grid
size and total vertex count. In this approach, a thread with
ID tid processes vertices at positions tid, tid + stride, tid +
+ 2 x stride, and so forth, where stride equals
blockDimension * gridDimension. This pattern allows the
same kernel to handle graphs of arbitrary size by using
fewer threads than vertices [1]. The optimal number of
threads for a given graph can be determined experimentally,
balancing resource utilization with memory bandwidth.
Time complexity becomes O ((|V] — 1) x ([|V]/P] *
X qvg degree + sync_cost)) where avg degree = |E|/|V], as
each thread now processes multiple vertices sequentially
within each iteration. The load balancing factor ranges from
O (1) for uniform degree distribution to O (max_degreee/
avg_degree) for skewed distributions, maintaining the same
O (|V2 + |E]) space complexity.

Strided with flag [11]: Both previous implementations
suffer from inefficient work distribution, as threads process
vertices whose distances changed since the previous
iteration. The flag-based optimization addresses this
by tracking which vertices had distance updates in the
previous iteration. We maintain a Boolean flag array of size
|V], where flag[i] indicates whether vertex i--th distance
changed in the previous iteration. During the distance
update phase, if previousDistance[i] > distance[i], we set
flag[i] = true. In the subsequent iteration, threads only
process outgoing edges from vertices with flag[i] = true,
significantly reducing unnecessary computations [11]. The
flag is reset to false when a vertex edges are processed,
preparing for the next iteration. The time complexity per
iteration i becomes O (Active_vertices(i) x avg_degree/P),
where Active_vertices(i) represents vertices with updated
distances. In the expected case, this yields O (|E| x H_|V|/P)
where H _|V] is the |V|" harmonic number. Space complexity
remains O (|V]2 + |E|) plus O (|V]) for the flag array.

I CUDA C++ Programming Guide. Available at: https://docs.
nvidia.com/cuda/cuda-c-programming-guide/, free. English lang.
(accessed: 02.06.2025).

Experimental Setup: Dijkstra algorithm

For Dijkstra algorithm evaluation, we used Stanford’s
Peer-to-peer network dataset [16], which is well-suited
for evaluating all-pairs shortest path computations in
moderately-sized graphs. The graph is represented using
an adjacency matrix format for efficient neighbor lookups
during shortest path computation.

Dijkstra algorithm presents parallelization challenges
due to its inherently sequential nature of selecting the
minimum unvisited vertex [1, 3, 17]. Instead of parallelizing
the core algorithm logic, we implement a parallel all-pairs
approach where each thread computes shortest paths from
a different source vertex. Each thread runs an instance of
Dijkstra algorithm using a different source vertex. Since
GPU threads cannot efficiently maintain individual priority
queues due to memory constraints, each thread uses a
simple array-based approach to find the next minimum
unvisited vertex [3]. The kernel assigns one thread per
source vertex, with thread src computing shortest paths
from vertex src to all other vertices. Each thread maintains
its own visited array and distance array within the global
distance matrix. This approach achieves parallelism across
different source vertices while preserving the sequential
correctness of individual Dijkstra computations. Our
approach executes |V] independent Dijkstra instances in
parallel, yielding time complexity O ((|V]? + |E|) x |V|/P)
where each thread performs O (|V|? + |E|) work for its
assigned source. Space complexity is O (|V]2 + |V] x P)
for the distance matrix and per-thread visited arrays, with
optimal performance when P = |V].

Experimental Setup: Floyd-Warshall algorithm

For the Floyd-Warshall algorithm evaluation, we used
Stanford’s Peer-to-peer network dataset [16] and the graph
is represented using an adjacency matrix format.

One thread per edge: This implementation provides
maximum parallelism by assigning one thread to each
edge in the graph [9]. Using a 2D thread grid, thread (i, j)
handles the edge from vertex i to vertex j. In each of the
iterations | V], every thread checks whether using the current
intermediate vertex k provides a shorter path. This approach
achieves excellent memory coalescing as threads in the
same warp access consecutive memory locations in the
distance matrix [10]. However, it requires launching |V]?
threads, limiting scalability for very large graphs due to
GPU resource constraints. Time complexity is O (|V]3/P),
where P = min(|V|2, GPU cores), as |V|? threads perform
O (1) work per iteration across |V] iterations. This achieves
optimal parallelization when sufficient GPU cores are
available. Space complexity remains O (|V|?) for the
distance matrix with optimal memory coalescing patterns

One thread per edge with shared memory: This
variant optimizes the one thread per edge approach by
reducing global memory accesses through shared memory
[6, 18] utilization. In iteration £, threads in the same row
all access distance[i][k], creating an opportunity for shared
memory optimization. We use 1D thread blocks where the
first thread in each block loads distance[i][k] into shared
memory, making it available to all threads in the block
through shared memory broadcast [6]. This reduces global
memory bandwidth requirements, though synchronization
overhead can limit performance gains. Time complexity
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remains O (|/]3/P) but with reduced memory access latency
due to shared memory utilization. Space complexity
includes additional O (shared _memory _per block) for
cached data, though synchronization overhead may offset
some performance benefits for smaller graphs.

One thread per vertex implementation: To improve
scalability, the one thread per vertex implementation
reduces thread count by assigning one thread per vertex
rather than per edge. Each thread handles one row of the
distance matrix, iterating through all potential destinations
for its assigned source vertex. Thread i processes all edges
from vertex i, checking each destination j to determine if
routing through intermediate vertex k offers improvement.
This approach requires fewer threads while maintaining
reasonable parallelism, making it suitable for larger graphs.
Time complexity becomes O (|V]3/P), where P = min(]V/],
GPU cores), but each thread now performs O (]V]?) work
across all iterations. This provides better scalability for
large graphs by reducing thread count requirements while
maintaining the same O (|V]2) space complexity for the
distance matrix.

Tiled implementation: This implementation addresses
memory bandwidth limitations by dividing the adjacency
matrix into 2D tiles of size TILE DIMENSION x TILE
DIMENSION. At each iteration, tiles are processed in three
phases. In phase 1, the primary tile (diagonal tile containing
intermediate vertex) is processed using a single thread
block, where all paths within this tile are updated using
vertices from the same tile as intermediates. In phase 2,
tiles sharing the same row or column as the primary tile are
processed, where these tiles use vertices from the primary
tile as intermediates, requiring data from both the primary
tile and the current tile. In phase 3, the remaining tiles are
processed using precomputed results from primary row and
column tiles. This phase achieves maximum parallelism
as all remaining tiles can be processed independently
[5, 19, 20]. This approach ensures that each global
memory location is accessed exactly once per iteration,
significantly improving memory efficiency compared
to the basic implementations. The time complexity
becomes O (|V|? + |V| x TILE_DIMENSION) through the
three-phase approach: primary tile O (|V]), border tiles
O (7)), and interior tiles O (TILE _DIMENSION) with
full parallelization [5]. Space complexity remains O (|V]2)
with optimal tile size TILE_DIMENSION = V(GPU cores)
minimizing total execution time.

Tiled with shared memory: This implementation
enhances the basic tiled approach by utilizing shared
memory [6] to cache frequently accessed data within each
thread block. In phase 1, the primary tile data is loaded
into shared memory once and reused for all computations
within the tile, eliminating redundant global memory
accesses. During phase 2, each thread block loads the
relevant portion of the primary tile into shared memory
alongside its tile data, enabling fast access to intermediate
vertex information. In phase 3, thread blocks load data
from their corresponding row and column tiles into shared
memory, significantly reducing global memory bandwidth
requirements as multiple threads access the same cached
values. Time complexity improves to O (|V]2 + |V] x
x TILE _DIMENSION/memory_speedup), where memory _

speedup =~ 10-100 times from shared memory utilization
[6]. Space complexity includes O (|V]?> + min(num_blocks
x TILE DIMENSION?, total shared memory)) for the
distance matrix plus shared memory usage, representing
the most optimized implementation combining algorithmic
restructuring with memory hierarchy optimization.

Results and Analysis

The Bellman-Ford algorithm experiments were
conducted on the DIMACS Road Networks dataset!, with
performance measured across different graph sizes. Fig. 1
shows the execution times for the three implementation
variants across various datasets. The one thread per
vertex implementation serves as the baseline, providing
straightforward parallelization but facing scalability
limitations for larger graphs.

The strided implementation shows mixed performance
results: it runs slower than the baseline for small graphs due
to the overhead of grid-stride loops [7], but demonstrates
better scalability for larger graphs where the naive version
becomes resource-constrained.

The strided with flag optimization delivers the
most significant performance improvements, achieving
approximately 2.8 times faster execution compared to the
one thread per vertex implementation. This optimization
proves highly effective because it eliminates unnecessary
work by processing only vertices whose distances changed
in the previous iteration [11]. For the largest dataset
(Eastern USA with 3.6 million vertices and 8.8 million
edges), the strided with flag variant completed in 409 s
compared to 1137 s for the baseline implementation. The
performance characteristics reveal that the flag optimization
becomes increasingly beneficial as graph size grows, since
larger graphs tend to have more vertices with unchanged
distances in later iterations of the algorithm.

Dijkstra algorithm evaluation used Stanford’s Peer-to-
peer network dataset [16]. Table shows the performance
comparison between CPU and GPU implementations. The
parallel all-pairs GPU implementation achieved significant
speedup over the serial CPU version, completing the p2p-
Gnutella04 dataset with 11K vertices and 40K edges in
approximately 120 s compared to 24 minutes for the CPU
implementation. However, the inherently sequential nature
of Dijkstra algorithm limits the parallelization benefits
compared to the other algorithms studied [1, 3].

The GPU implementation performance is constrained
by the need for each thread to maintain its distance
and visited arrays, along with the sequential process of
finding minimum unvisited vertices within each thread
computation. Despite these limitations, the GPU version
still provides meaningful acceleration for all-pairs shortest
path computation.

The Floyd-Warshall algorithm experiments demonstrate
the most performance improvements among the three
algorithms studied. Fig. 2 illustrates the execution times
across different implementation variants and dataset sizes.

I 9th DIMACS Implementation Challenge: Shortest Paths.
Available at: http://www.diag.uniromal.it/~challenge9/download.
shtml, free. English lang. (accessed: 03.06.2025).
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Fig. 1. Execution time comparison for Bellman-Ford variants on DIMACS Road Networks Dataset
Table. Execution time comparison for Dijkstra on Stanford’s Peer-to-peer network dataset
Dataset Number of Vertices Number of Edges CPU GPU
p2p-Gnutella04 10,876 39,994 24 mins 119.941 s

The one thread per edge implementation achieves
excellent performance for small to medium graphs
due to maximum parallelization and good memory
coalescing!. However, its scalability is limited by the
requirement for |V threads. The variant of one thread per
edge implementation with shared memory shows some
improvement through reduced global memory accesses [6],
though synchronization overhead can limit gains.

The one thread per vertex implementation provides
better scalability by reducing thread count, making it
suitable for larger graphs while maintaining reasonable
performance. However, the tiled implementations show the
most significant improvements [5].

The tiled implementation using global memory
outperforms all basic variants, running approximately
4-6 times faster than the one thread per vertex version. The
tiled implementation with shared memory delivers the best
overall performance, achieving roughly 8 times speedup
over the baseline and approximately 2 times improvement
over the global memory tiled version [6].

For the p2p-Gnutella04 dataset, the tiled implementation
with shared memory completed in 2.38 s compared to over

I CUDA C++ Programming Guide. Available at: https://docs.
nvidia.com/cuda/cuda-c-programming-guide/, free. English lang.
(accessed: 02.06.2025).

30 s for the one thread per vertex variant. This improvement
demonstrates the effectiveness of combining algorithmic
restructuring (tiling) with memory hierarchy optimization
(shared memory) [5, 6].

When comparing across algorithms, Floyd-Warshall
shows the greatest potential for GPU acceleration due
to its inherently parallel structure and regular memory
access patterns [17]. The algorithm O (|V]3) complexity
makes GPU acceleration particularly valuable for reducing
computation time.

Bellman-Ford demonstrates good parallelization
potential, especially with the flag optimization that reduces
unnecessary work [11]. The algorithm iterative nature and
edge-based parallelism translate well to GPU architectures
[1,2].

Dijkstra algorithm shows the most limited
parallelization benefits due to its inherently sequential
vertex selection process [1, 3]. However, the all-pairs
parallel approach still provides meaningful acceleration
over serial CPU implementations.

The results highlight the importance of algorithm-
specific optimizations: flag-based early termination for
Bellman-Ford [11], tiled computation with shared memory
for Floyd-Warshall [5, 6], and parallel source processing
for Dijkstra. Memory access patterns and work distribution
significantly impact GPU performance, with regular access
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Fig. 2. Execution time comparison for Floyd-Warshall on Stanford’s Peer-to-peer network dataset

patterns and balanced workloads yielding the best results
[1,2,21,22].

A common pattern is that all GPU implementations,
even on the largest datasets, outperform the corresponding
serial CPU versions on the smallest datasets used for
experimenting. This demonstrates the computational
advantage that GPU parallelization provides to enable the
processing of much larger problem instances in less time
than traditional approaches require for smaller problems.

Future Work

Several directions emerge for extending this research,
including investigating advanced graph representations,
such as ELL format to address control divergence issues
[7], developing multi-GPU implementations for very large
graphs [8], and adapting algorithms for dynamic graphs
where edges are modified during computation. Additional
opportunities include implementing memory-efficient
techniques like staged loading for graphs exceeding
GPU capacity, exploring hybrid CPU-GPU approaches to
optimize resource utilization, and developing application-
specific optimizations tailored to domains such as
transportation or social networks. Comparative analysis

I CUDA C++ Programming Guide. Available at: https://docs.
nvidia.com/cuda/cuda-c-programming-guide/, free. English lang.
(accessed: 02.06.2025).

with alternative parallel platforms such as OpenCL or
distributed computing frameworks would provide broader
insights into parallel shortest path computation trade-offs
across different architectures.

Conclusion

This paper presented an evaluation of GPU
implementations for three fundamental shortest path
algorithms: Bellman-Ford, Dijkstra, and Floyd-Warshall
using Compute Unified Device Architecture. Through
systematic implementation and optimization of multiple
variants, we demonstrated significant performance benefits
of GPU acceleration for graph processing. Floyd-Warshall
achieved the most dramatic improvements with the tiled
shared memory implementation delivering approximately
8 times speedup, while Bellman-Ford showed substantial
acceleration through flag-based optimization achieving
2.8 times performance improvement. Although Dijkstra
algorithm exhibited more limited parallelization benefits
due to its sequential nature, it still provided meaningful
acceleration over CPU implementations. The results reveal
that GPU implementations on large datasets consistently
outperform CPU versions on small datasets, highlighting
the transformative potential of parallel computing for
shortest path problems and enabling practical processing
of real-world graph sizes previously computationally
prohibitive.
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