УДК 517.984.68 ДВУХЧАСТИЧНАЯ МОДЕЛЬ ПРОВОДНИКА С КВАНТОВЫМ КОЛЬЦОМ Д.А. Еремин

С помощью теории самосопряженных расширений строятся операторы, описывающие поведение двух взаимодействующих частиц в проводнике и в кольце. С помощью полученных операторов описывается двухчастичная модель проводника с квантовым кольцом. Спектр полученного оператора численно исследуется на наличие дополнительных точечных уровней. Проводится сравнение результата с аналогичной одночастичной задачей.

Ключевые слова: уравнение Шредингера, симметрические операторы, теория Крейна, самосопряженные расширения, функция Грина.

Введение

Современное развитие наноэлектроники делает необходимой задачу теоретического исследования различных квантовых наносистем. В некоторых случаях адекватной моделью таких систем является квантовый граф. Математическая теория одночастичных задач для квантовых графов достаточно хорошо развита. В то же время многочастичные задачи рассматривались только для некоторых простых типов систем. Эти задачи являются более сложными, поскольку размерность конфигурационного пространства многократно возрастает в зависимости от числа частиц. С другой стороны, без учета взаимодействия частиц невозможно эффективно моделировать многие наноустройства, в частности, элементы квантового компьютера.

В данной работе описывается двухчастичная модель проводника с квантовым кольцом с помощью схемы, предложенной в работе В.А. Гейлера и И.Ю. Попова [1]. Эта схема использует теорию Крейна самосопряженных расширений симметрических операторов.

Поведение двух взаимодействующих частиц на прямой

Гамильтониан, описывающий поведение двух невзаимодействующих частиц на прямой, имеет вид (полагаем, что частицы имеют равные массы)

$$H_0 = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right),$$

с пространством состояний $D(H_0) = L^2(\mathbf{R}^2)$.

Для удобства воспользуемся системой единиц, в которой $\hbar = 1$, m = 1.

Оператор H_1 , описывающий поведение двух взаимодействующих частиц на прямой, формально может быть записан в виде (рассматриваем только простейшее δ -образное взаимодействие)

 $H_1 = H_0 + k\delta(y - x),$

где *k* – интенсивность взаимодействия частиц между собой.

Построение оператора H_1 производим с помощью техники «сужения–расширения» симметрических операторов. С этой целью рассматриваем сужение *S* оператора H_0 на множество функций, равных нулю на диагонали (y = x) конфигурационного пространства

 $D(S) = \{ \psi \in D(H_0) : \psi(x, x) = 0, x \in \mathbf{R} \}.$

Гамильтониан системы – две взаимодействующие частицы в проводнике – следует искать среди самосопряженных расширений оператора S. С этой целью воспользуемся формулой Крейна, которая описывает резольвенты всех самосопряженных расширений заданного симметрического оператора S с помощью резольвенты некоторого его фиксированного самосопряженного расширения [2, 3].

Обозначим через $G_0(\mathbf{r}, \mathbf{r}'; z)$ функцию Грина оператора H_0 . Она хорошо известна и имеет вид

$$G_0(\mathbf{r},\mathbf{r}';z) = \frac{1}{\pi} K_0(\sqrt{-2z}|\mathbf{r}-\mathbf{r}'|), \quad \mathbf{r},\mathbf{r}'\in\mathbf{R}^2, \quad z\in\mathbf{C}\setminus[0;+\infty)$$

где К₀ – функция Макдональда. Тогда отображения

$$\Gamma(z): L^{2}(\mathbf{R}) \to L^{2}(\mathbf{R}^{2}),$$

$$Q(z): L^{2}(\mathbf{R}) \to L^{2}(\mathbf{R}),$$
действующие по правилу
$$\Gamma(z) f = \int C_{1}(u, v, z) dv dv z \int f(z) dv$$

$$\begin{split} \Gamma(z)f &= \int_{\mathbf{R}} G_0(x, y, x', x'; z) f(x') dx', \\ Q(z)f &= \int_{\mathbf{R}} G_0(x, x, x', x'; z) f(x') dx', \end{split}$$

представляют собой, соответственно, Γ -функцию и Q-функцию Крейна пары операторов (S, H_0) .

Обозначим через R(z) и $R_0(z)$ – резольвенты H_1 и H_0 соответственно. Тогда по формуле Крейна получаем

$$R(z) = R_0(z) - \Gamma(z) [Q(z) + A]^{-1} \Gamma^*(\bar{z}) ,$$

где $A = \frac{2}{k}$ – параметр, характеризующий самосопряженные расширения оператора S.

Непосредственные вычисления показывают, что функция Грина оператора H_1 , описывающего поведение двух взаимодействующих частиц на прямой, имеет вид

$$G_{1}(x, y, x', y'; z) = \frac{1}{\pi} K_{0} \left(\sqrt{-2z} \sqrt{(x - x')^{2} + (y - y')^{2}} \right) - \frac{1}{2\pi} \int_{\mathbf{R}} \frac{k \exp[i(x + y - x' - y')s/2] \exp[-(|x - y| + |x' - y'|)\sqrt{s^{2} - 4z}/2]}{\left(k + 2\sqrt{s^{2} - 4z}\right)\sqrt{s^{2} - 4z}} ds.$$

Поведение двух взаимодействующих частиц в кольце

Аналогично случаю на прямой, строится гамильтониан H_r , описывающий поведение двух взаимодействующих частиц в кольце. В данном случае невозмущенный оператор H_0 , описывающий поведение двух невзаимодействующих частиц в кольце, имеет вид

$$H_0 = -\frac{1}{2\rho^2} \left(\frac{\partial^2}{\partial \varphi_1^2} + \frac{\partial^2}{\partial \varphi_2^2} \right),$$

где р – радиус кольца. Пространство состояний данного оператора записывается в следующем виде:

$$D(H_0) = \left\{ \psi \in L^2(\mathbf{T}^2) : \psi|_{\varphi_j = -\pi} = \psi|_{\varphi_j = \pi}, \frac{\partial \psi}{\partial \varphi_j}|_{\varphi_j = -\pi} = \frac{\partial \psi}{\partial \varphi_j}|_{\varphi_j = \pi} \right\}, \quad j = 1, 2,$$

где **T** = $[-\pi; \pi]$.

Функция Грина $G_r(\varphi_1, \varphi_2, \varphi_1', \varphi_2'; z)$ оператора H_r имеет вид

$$G_{r}(\varphi_{1},\varphi_{2},\varphi_{1}',\varphi_{2}';z) = \frac{1}{2\pi^{2}} \sum_{n,m=-\infty}^{+\infty} \frac{\exp[im(\varphi_{1}-\varphi_{1}')]\exp[in(\varphi_{2}-\varphi_{2}')]}{m^{2}+n^{2}-2z\rho^{2}} - \frac{1}{\pi^{3}} \sum_{s,t=-\infty}^{+\infty} \frac{k\rho \exp[i\varphi_{1}(s+t)/2]}{s^{2}+t^{2}-4z\rho^{2}} \cdot \frac{\exp[i\varphi_{2}(s-t)/2]}{ka_{s}(z)+2} \sum_{m=-\infty}^{+\infty} \frac{\exp[i(\varphi_{2}'-\varphi_{1}')m]\exp[is\varphi_{2}']}{m^{2}+(s-m)^{2}-2z\rho^{2}} \int_{0}^{+\infty} \frac{1}{2\pi^{2}} \left(\sum_{m=-\infty}^{+\infty} \frac{\exp[i(\varphi_{1}-\varphi_{1}')m]\exp[is\varphi_{2}']}{m^{2}+(s-m)^{2}-2z\rho^{2}} \right) dz$$

где

$$a_{s}(z) = \begin{cases} \frac{\rho}{\sqrt{s^{2} - 4z\rho^{2}}} \operatorname{cth}\left(\pi\sqrt{s^{2} - 4z\rho^{2}}/2\right), & s = 2m, \ m \in \mathbb{Z}, \\ \frac{\rho}{\sqrt{s^{2} - 4z\rho^{2}}} \operatorname{th}\left(\pi\sqrt{s^{2} - 4z\rho^{2}}/2\right), & s = 2m + 1, \ m \in \mathbb{Z}. \end{cases}$$

Двухчастичная модель проводника с квантовым кольцом

Рассматриваем систему, состоящую из квантового кольца и проводника. Схематически такая система изображена на рис. 1.

Рис. 1. Система, состоящая из квантового кольца и проводника

Введем два вспомогательных оператора

$$H_{2} = -\frac{1}{2} \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}} \right), \quad D(H_{2}) = L^{2} (\mathbf{R} \times \mathbf{T}),$$
$$H_{3} = -\frac{1}{2} \left(\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}} + \frac{\partial^{2}}{\partial x^{2}} \right), \quad D(H_{3}) = L^{2} (\mathbf{T} \times \mathbf{R}),$$

описывающих поведение одной из частиц в кольце, а другой – в проводнике. Функция Грина данных операторов имеет вид

$$G_{2,3}(x,\phi,x',\phi';z) = \frac{1}{2\pi^2 \rho} \int_{\mathbf{R}} \sum_{m=-\infty}^{+\infty} \frac{\exp[in(x-x')]\exp[im(\phi-\phi')]}{n^2 + \frac{m^2}{\rho^2} - 2z} dn.$$

Конфигурационными пространствами для данных операторов будут цилиндры. С помощью данных цилиндров будем осуществлять склейку плоскости и тора (рис. 2) – конфигурационных пространств для двухчастичных задач на прямой и в кольце соответственно. Пока контакт между проводником и кольцом разомкнут, гамильтониан системы представляет собой прямую сумму

 $H_0=H_1\oplus H_2\oplus H_3\oplus H_4.$

Включение контактов моделируем с помощью процедуры «сужение-расширение». С этой целью рассматриваем сужение S оператора H_0

$$S_0 = S_1 \oplus S_2 \oplus S_3 \oplus S_4 ,$$

где

$$\begin{split} D(S_1) &= \left\{ \psi \in D(H_1) : \psi(0, x) = \psi(x, 0) = 0 \right\}, \quad D(S_2) = \left\{ \psi \in D(H_2) : \psi(0, \phi) = \psi(x, 0) = 0 \right\}, \\ D(S_3) &= \left\{ \psi \in D(H_3) : \psi(0, x) = \psi(\phi, 0) = 0 \right\}, \quad D(S_4) = \left\{ \psi \in D(H_4) : \psi(0, \phi) = \psi(\phi, 0) = 0 \right\}. \end{split}$$

Оператор S – симметрический, он описывает поведение двух частиц в системе изолированных проводника и кольца, имеющих проколы в точках x = 0 (в проводнике) и $\varphi = 0$ (в кольце). Гамильтониан устройства с включенным контактом следует искать среди самосопряженных расширений оператора S. Обозначим это расширение через H, а через R(z) – его резольвенту. Тогда по формуле Крейна получаем

$$R(z) = R_0(z) - \Gamma(z) [Q(z) + A]^{-1} \Gamma^*(\bar{z}) .$$

Рис. 2. Правило склейки конфигурационных пространств

Здесь A – эрмитов оператор 8×8 , параметризующий самосопряженные расширения оператора S. Он описывает характеристики контакта, и его вид определяется условиями Кирхгофа (физически для идеального контакта эти условия означают сохранение потока через точку контакта). Поэтому матрицу выбираем в следующем виде:

	α	0	β	0	0	0	0	0)	
<i>A</i> =	0	α	0	0	0	β	0	0	,
	β	0	γ	0	0	0	0	0	
	0	0	0	μ	0	0	0	η	
	0	0	0	0	μ	0	η	0	
	0	$\overline{\beta}$	0	0	0	γ	0	0	
	0	0	0	0	$\overline{\eta}$	0	ν	0	
	0	0	0	$\overline{\eta}$	0	0	0	v	

где внедиагональные элементы характеризуют степень идеальности контакта, а диагональные элементы – степень отклонения контакта от идеального.

Исследование модели на дополнительные энергетические уровни

Из формулы Крейна следует, что в спектр оператора H дополнительно войдут те значения z, при которых оператор Q(z) + A необратим. Рассмотрим случай идеального контакта, когда диагональные элементы матрицы A равны нулю, а внедиагональные равны между собой (пусть, для определенности, они равны β). В этом случае основной энергетический уровень соответствующей одночастичной задачи может быть найден из уравнения

$$-\frac{1}{2z}\operatorname{cth}\left(\pi\rho\sqrt{-z}\right)-\beta^2=0.$$

Сравнивая численно полученное значение основного энергетического уровня двухчастичной задачи с основным энергетическим уровнем одночастичной задачи в зависимости от различных значений параметра β , можно сделать вывод, что при уменьшении (увеличении) значения параметра β основной энергетический уровень двухчастичной задачи уменьшается (увеличивается), при этом аналогичное поведение наблюдается и у основного энергетического уровня одночастичной модели. Более того, основные энергетические уровни двухчастичной и одночастичной моделей отличаются в два раза, что объясняется количеством частиц.

На рис. 3 представлены численно полученные энергетические уровни двухчастичных моделей с взаимодействием частиц и без. Полагается, что β = 0,1, ρ = 1. Из графиков видно, что взаимодействие частиц приводит к расслоению энергетических уровней системы.

Рис. 3. Энергетические уровни двухчастичных моделей с взаимодействием частиц (а) и без него (б): *k* – интенсивность взаимодействия, *z* – энергия (в безразмерных единицах)

Заключение

Построена двухчастичная модель проводника с квантовым кольцом. Модель исследована на наличие дополнительных энергетических уровней, произведено сравнение результата исследования с аналогичной одночастичной задачей. Проведенные расчеты позволяют сделать следующие качественные выводы о характеристиках системы.

- 1. При уменьшении (увеличении) значения параметра β основной энергетический уровень системы уменьшается (увеличивается).
- 2. Основной энергетический уровень системы по сравнению с одночастичной моделью изменился в два раза.
- 3. Взаимодействие частиц приводит к расслоению энергетических уровней.

Литература

- 1. Гейлер В.А., Попов И.Ю. Баллистический транспорт в наноструктурах: явнорешаемые модели // Теоретическая и математическая физика. – 1996. – Т. 107 – № 1. – С. 12–20.
- Крейн М.Г., Лангер Г.К. О дефектных подпространствах и обобщенных резольвентах эрмитова оператора в пространстве П_k // Функциональный анализ и его приложения. 1971. Т. 5. Вып. 2. С. 59–71.
- Альбеверио С., Гестези Ф., Холден Х., Хоеэг-Крон Р. Решаемые модели в квантовой механике. М.: Мир, 1991. – 586 с.

Еремин Дмитрий Александрович – Мордовский государственный университет им. Н.П. Огарева, аспирант, ereminda@mail.ru