# 2

# ФОТОНИКА И ОПТОИНФОРМАТИКА

# УДК 535.4 ЦИФРОВАЯ ГОЛОГРАФИЧЕСКАЯ МИКРОСКОПИЯ: СОВРЕМЕННЫЕ МЕТОДЫ РЕГИСТРАЦИИ ГОЛОГРАММ МИКРООБЪЕКТОВ В.Г. Гендин, И.П. Гуров

Рассмотрены принципы цифровой голографии и голографической микроскопии и особенности регистрации голограмм. Представлены основные схемы записи цифровых голограмм микрообъектов, методы повышения разрешения в цифровой голографии и новые методы использования цифровой голографии для исследования микрообъектов. Ключевые слова: цифровая голографическая микроскопия, разрешающая способность голограммы, нулевой порядок дифракции, биологический объект.

#### Введение

Цифровая голография применяется во многих областях науки и технологий для неразрушающих исследований различных объектов, в том числе физических неоднородностей, деформаций, трехмерной структуры объектов различной физической природы и др.

Методы наблюдения и анализа состояния трехмерной микроструктуры биологических объектов на клеточном микроуровне исключительно важны для различных областей исследований в биологии и медицине, где допускается только неинвазивная диагностика. Современные неинвазивные методы цифровой голографии имеют высокое разрешение и являются наиболее важными и перспективными для развития биомедицины. Они особенно активно развиваются в ведущих научных лабораториях мира в течение последних лет [1–7]. Использование современных видеокамер обеспечивает возможность регистрировать голограммы в электронной форме с повышенным разрешением и обрабатывать их на компьютере. При этом с помощью компьютера возможно получение точных количественных данных как об амплитуде, так и о фазе предметной волны, отраженной от исследуемого объекта или прошедшей через объект.

Методы цифровой голографической микроскопии (ЦГМ) позволяют значительно сократить затраты на дорогостоящие оптико-механические узлы, поскольку при использовании ЦГМ не требуется точная фокусировка на объекте исследования: запись голограммы производится при фиксированном положении объектива, а фокусировка на различных расстояниях осуществляется при использовании специальных вычислительных алгоритмов. Поскольку современное развитие вычислительной техники позволило при высоких вычислительных мощностях значительно сократить стоимость компьютеров по сравнению со стоимостью оптико-механических узлов, а также ввиду отсутствия в ЦГМ необходимости записи большого числа изображений различных слоев объекта указанные преимущества особенно важны при использовании ЦГМ для исследования объектов биологической природы.

В работе рассматриваются основные особенности цифровой регистрации и анализа голограмм, принципы, на которых основываются технологии записи голограмм микрообъектов, проблемы, возникающие при регистрации голограмм микрообъектов, и современные варианты их решения.

## Теоретические основы цифровой голографии

Запись голограмм в цифровой голографии осуществляется при регистрации результирующего поля с помощью видеокамеры в форме суммы предметной волны, взаимодействующей с исследуемым объектом, и опорной волны. Объектная и опорная волны интерферируют в плоскости записи голограммы. Голограмма содержит полную информацию о трехмерном распределении оптического поля объектной волны в виде микроинтерференционных полос. При восстановлении изображения исходного объекта в классической голографии зарегистрированная интерференционная картина освещается таким же опорным пучком, как и при записи. В результате дифракции восстанавливается изображение объекта. Для реконструкции изображения из голограммы в цифровой голографии используются вычислительные методы, позволяющие в результате обработки голограммы определить значения амплитуды и фазы предметной волны [8–10].

Распределение интенсивности I(x, y) в плоскости записи голограммы (x, y) есть квадрат модуля суммы комплексных амплитуд объектной O(x, y) и опорной R(x, y) волн, т.е.

$$I(x, y) = |O(x, y) + R(x, y)|^{2} = |R(x, y)|^{2} + |O(x, y)|^{2} + O(x, y)R^{*}(x, y) + R(x, y)O^{*}(x, y),$$
(1)

где  $R^*(x, y) = R(x, y) \exp(i\varphi_R(x, y))$  – комплексно-сопряженная величина для объектной волны;  $O^*(x, y) = O(x, y) \exp(i\varphi_O(x, y))$  – комплексно-сопряженная величина для опорной волны. Поскольку комплексная амплитуда объектной волны R(x,y) заранее известна, восстановление изображения из голограммы осуществляется при вычислении произведения R(x,y) и распределения интенсивности в голограмме I(x, y), а именно

$$R(x, y)I(x, y) = R(x, y)|R(x, y)|^{2} + R(x, y)|O(x, y)|^{2} + O(x, y)|R(x, y)|^{2} + R^{2}(x, y)O^{*}(x, y).$$
(2)

Первые два слагаемых в правой части уравнения (2) составляют нулевой порядок дифракции, или фоновую составляющую. Третье слагаемое представляет собой точную копию исходного поля  $O^*(x, y) = O(x, y) \exp(i\varphi_O(x, y))$  и называется мнимым изображением объекта. Четвертое слагаемое относится к еще одному изображению объекта, «изображению-двойнику», которое называется действительным изображением. При этом их пространственное расположение зависит от угла между направлениями распространения опорной и объектной волн. Поскольку размер пикселя матрицы накладывает ограничение на максимальный допустимый угол, нулевой порядок дифракции частично перекрывает изображение объекта. Эта проблема решается различными способами.

# Устранение нулевого порядка дифракции

Для устранения нулевого порядка дифракции известно четыре основных подхода. Первый из них основан на цифровом устранении нулевого порядка дифракции, например, с применением фильтра высоких частот с малой частотой среза [8]. Второй метод состоит в вычитании средней яркости из исходной голограммы [8, 11]. Третий метод основывается на записи нескольких голограмм, зарегистрированных с заданными сдвигами фазы опорной волны. После совместной обработки набора голограмм можно реконструировать изображение, не содержащее нулевой порядок дифракции [4, 11, 12]. Четвертый метод основан на том, что можно зарегистрировать раздельно объектную и опорную волны и через известные преобразования получить голограмму нулевого порядка дифракции, который затем вычитается из голограммы [11].

Первые два метода устранения нулевого порядка дифракции применимы только для внеосевых голограмм, т.е. в случае, когда при регистрации голограммы существует некоторый угол между направлениями распространения предметной и опорной волн. Типичная схема записи внеосевых голограмм представлена на рис. 1 [1].



Рис. 1. Схема процесса записи голограмм

Однако при использовании внеосевой схемы регистрации голограмм появляется проблема неполного использования поля матрицы видеокамеры, на которую производится запись, что приводит к снижению разрешения реконструированного изображения [4, 12]. Способы устранения нулевого порядка дифракции на основе фазового сдвига и метода раздельной записи объектной и опорной волн обеспечивают более полное использование поля матрицы, однако для реконструкции голограммы требуется запись двух и более видеокадров, что накладывает некоторые ограничения при практическом использовании, например, оказывается затрудненной или невозможной регистрация голограмм быстропротекающих процессов.

На рис. 2 представлена схема регистрации голограмм пропускающих свет микрообъектов с использованием алгоритма фазового сдвига [13].

Здесь зеркало 32 закреплено на пьезоэлектрическом преобразователе, с помощью которого задаются малые изменения разности оптических длин путей опорной и объектной волн. Представленная на рисунке схема предлагается авторами для исследования микротрещин и дефектов под воздействием механических нагрузок, однако она может использоваться и для исследований биологических объектов.



Рис. 2. Схема записи цифровых голограмм с фазовым сдвигом: Л1, Л2 – линзы; 31, 32 – зеркала; МО – микрообъектив; ПК – персональный компьютер

Авторы работы [11] наряду с другими методами предлагают альтернативный метод устранения нулевого порядка дифракции. Проанализировав уравнение (1), можно показать, что голограмма, которая не содержит нулевой порядок дифракции, описывается выражением

 $I_h(x, y) = I(x, y) - |R(x, y)|^2 + |O(x, y)|^2$ .

Значения R(x, y) и O(x, y) можно получить при записи двух видеокадров с перекрытой соответственно измерительной и опорной ветвью в оптической системе. При этом требуется зарегистрировать на видеокамеру три изображения в различные моменты времени, что накладывает ограничения на регистрацию быстропротекающих процессов.

На рис. 3 представлен результат устранения нулевого порядка дифракции вышеописанным методом и методом фазового сдвига.





Рис. 3. Реконструированное изображение медали диаметром 50 мм с остаточным влиянием нулевого порядка дифракции (а) и с устраненным нулевым порядком дифракции (б)

На рис. 3, б, видно, что нулевой порядок устранен почти полностью, в отличие от изображения на рис. 3, а, где наблюдаются полосы, перекрывающие часть изображения, которые вызваны непараллельностью смещения опорного отражателя в методе фазового сдвига. Эти результаты позволяют сделать вывод о преимуществе в простоте реализации метода устранения нулевого порядка при записи раздельно объектной и опорной волн.

Нулевой порядок дифракции вносит искажения как в реконструированную амплитуду, так и в фазу исследуемого объекта, что может привести к снижению точности при исследовании различных объектов. Так, например, в работе [14] исследуется точность определения малого смещения объекта методом цифровой голографии и сравнивается влияние метода устранения нулевого порядка дифракции на точность определения смещения объекта.

Для определения малого смещения объекта достаточно записать две голограммы в исходном и конечном состоянии. Далее восстанавливаются фазы обеих голограмм в виде

$$\varphi(\xi, \eta) = \operatorname{arctg}\left(\frac{\operatorname{Re}(Q(\xi, \eta))}{\operatorname{Im}(Q(\xi, \eta))}\right)$$

После этого вычисляется разность фаз

$$\Delta \varphi(\xi, \eta) = \varphi_1(\xi, \eta) - \varphi_2(\xi, \eta).$$

Расчет величины смещения в метрах производится с учетом того, что при смещении объекта оптическая длина пути увеличивается на величину, равную удвоенному смещению:

$$\Delta d = \frac{\lambda}{4\pi} \Delta \varphi$$

Таким образом, удалось установить, что среднее квадратическое отклонение определения смещения для различных методов устранения нулевого порядка дифракции различно. Так, для метода с использованием фильтрации среднее квадратическое отклонение полученных смещений от заданных составляет 3,28 нм, а для метода фазового сдвига – 2,31 нм.

Все описанные методы устранения нулевого порядка дифракции пригодны как для традиционной цифровой голографии, так и для ЦГМ.

### Схемы регистрации голограмм микрообъектов

В цифровой голографии можно выделить несколько различных видов голограмм. Основным из них являются голограммы Френеля и голограммы Фурье, которые, в свою очередь, могут быть осевыми и внеосевыми.

Голограмму Фурье можно определить как голограмму плоского объекта, записываемую с помощью опорного точечного источника, расположенного в плоскости объекта, параллельной плоскости голограммы. Голограмма Френеля – пропускающая голограмма, при записи которой регистрирующая среда находится в области дифракции Френеля рассеянного объектом излучения. Голограмма образуется как результат интерференции объектной волны в зоне дифракции Френеля с опорной плоской волной.

Осевые голограммы отличаются от внеосевых наличием угла между опорной и объектной волнами, т.е. в случае записи осевой голограммы опорная и объектная волны распространяются в одном и том же направлении, а в случае внеосевой голограммы – под некоторым малым углом. На значения угла между опорной и объектной волнами накладываются некоторые ограничения. В соответствии с критерием Найквиста, на каждый период интерференционной картины должны приходиться не менее двух отсчетов, т.е. светочувствительных ячеек (пикселей) оцифрованного изображения. Размер пикселя  $\Delta x$ ограничивает значение максимального угла  $\alpha_{max}$  при интерференции сферических вторичных волн от каждой точки объекта и опорной волны согласно условию [8]

$$\alpha_{\max} = \frac{\lambda}{2\Delta x}.$$

Следовательно, необходимо выбрать угол между опорной и предметной волнами так, чтобы, с одной стороны, выполнялся критерий Найквиста, а с другой – порядки дифракции были максимально отделены друг от друга.

Основная идея ЦГМ состоит в наличии дополнительной оптической системы (микрообъектива) между объектом и видеокамерой с формированием увеличенного изображения области, освещаемой объектной волной. Наличие микрообъектива является основной отличительной особенностью ЦГМ.

На рис. 4 представлена схема регистрации голограмм Фурье на основе интерферометра Маха-Цендера [15]. На этой схеме в качестве источника использован Не-Ne лазер с длиной волны 632,8 нм, излучение которого ослабляется нейтральным светофильтром. В объектном плече установлен исследуемый образец, а в опорном – микрообъектив с диафрагмой, находящейся в его фокусе, которые совместно формируют сферическую волну, интерферирующую в плоскости ПЗС-матрицы с объектной волной. Пара полуволновых пластинок и поляризующий светоделитель позволяют варьировать соотношение интенсивностей в опорном и объектном плечах.

На основе интерферометра Маха-Цендера возможна также запись голограмм Френеля. Например, в работе [16] авторы представили схему внеосевой записи голограмм с использованием 4*f*-системы (рис. 5). Использование такой системы для исследования микрообъектов позволяет избежать аберраций, которые возникают при использовании микрообъектива, а также значительно расширить поле зрения.



Рис. 4. Схема записи голограмм Фурье [15]: НФ – нейтральный светофильтр; ПСД – поляризующий светоделительный кубик; λ/2 – полуволновая пластинка; РП1, РП2 – расширители пучка;
 31, 32 – зеркала; МО – микрообъектив; ПХ – пинхол; СД – неполяризационный светоделительный кубик; ПЗС – ПЗС-видеокамера; ПК – компьютер



Рис. 5. Схема регистрации голограмм Френеля с 4*f*-системой: СД1, СД2 – светоделители; 31, 32 – зеркала; РП1, РП2 – расширители; 4*f* – 4*f*-система; ПЗС – ПЗС-видеокамера

Объект помещается в фокальную плоскость 4*f*-системы и освещается плоской волной, которая формирует геометрически увеличенное изображение, аналогичное положению самого объекта на расстоянии *z*. Результирующее поле голограммы формируется в плоскости ПЗС-матрицы в результате интерференции увеличенной области объектной волны с опорной волной.

Помимо интерферометра Маха–Цендера, широко используются системы регистрации голограмм на основе интерферометра Майкельсона [6, 7]. Пример реализации схемы записи голограмм на основе интерферометра Майкельсона представлен на рис. 6.



Рис. 6. Схема записи голограмм на основе интерферометра Майкельсона

Важное отличие схем на основе интерферометров Маха–Цендера и Майкельсона в цифровой голографии состоит в возможности исследования образцов различных видов. В первом случае удобнее исследовать прозрачные образцы в проходящем свете, а во втором – в отраженном свете.

В цифровой голографии могут использоваться не только лазерные источники излучения, но также источники с малой степенью когерентности [5, 17, 18]. На рис. 7 представлена схема записи голограмм с использованием суперлюминесцентного диода.





Изображенная на рис. 7 схема предоставляет возможность получать томографические изображения методом цифровой голографии. Акустооптический модулятор позволяет выделять требуемые длины волн и записывать серию голограмм за малый промежуток времени. Методика получения трехмерного изображения внутренней микроструктуры объекта основывается на поперечном сканировании объекта, записи серии двумерных голограмм, их реконструкции и последующем совмещении. При этом каждая из голограмм содержит информацию о внутренней структуре объекта в поперечном сечении в текущем продольном положении.

На рис. 8 представлен пример трехмерного изображения среды, полученного с помощью цифровой голографии.



Рис. 8. Результат реконструкции томографического изображения методом цифровой голографии с источником излучения малой когерентности (1,5×15 мм) [18]

#### Повышение разрешения в цифровой голографии

Одно из основных направлений исследований в области цифровой голографии в настоящее время состоит в повышении разрешающей способности. Предложен ряд методов повышения разрешения реконструированных изображений как на этапе записи цифровых голограмм, так и на этапе реконструкции изображений [1–3, 19].

Известно, что рассеянный объектом свет лишь частично попадает в поле регистрирующей матрицы, что снижает разрешение при записи голограмм. Применение дифракционной решетки позволяет большему количеству рассеянного объектом света попадать на светочувствительную матрицу. При этом обеспечивается более высокое разрешение.

На рис. 9 представлена схема для получения цифровых голограмм Фурье со сверхразрешением [19]. Для этого используется дифракционная решетка, размещенная после объекта.





Дифракционная решетка устанавливается между образцом и плоскостью регистрации. Известно, что свет, проходящий через дифракционную решетку, разлагается на три составляющие (порядка дифракции), одна из которых сохраняет свое направление (нулевой порядок), а две другие (в первых порядках дифракции) направлены под углом к исходному направлению, примерно равным  $\pm \lambda/p$ , где p – период дифракционной решетки. На рис. 10 представлен ход лучей без дифракционной решетки и с использованием дифракционной решетки. Из рис. 10 видно, что без использования дифракционной решетки (рис. 10, а) только малая часть света, рассеянного объектом, попадает в плоскость матрицы, тогда как в случае использования дифракционной решетки (рис. 10, б) большая часть света попадает в область регистрации.

Предлагается использовать два вида решеток – одномерные и двумерные. В первом случае может быть улучшено только латеральное разрешение. Во втором случае можно улучшить разрешение по всем координатам. Таким образом, использование двумерных дифракционных решеток для повышения разрешения в цифровой голографии является более эффективным.



Рис. 10. Ход лучей объектной волны без использования дифракционной решетки (а) и с использованием дифракционной решетки (ДР) (б)

### Заключение

Методы цифровой голографии и голографической микроскопии позволяют эффективно исследовать биологические и другие объекты с разрешающей способностью, определяемой длиной волны оптического излучения, параметрами оптической системы и регистрирующей среды.

В последние годы проведены активные исследования, направленные на совершенствование методов и средств цифровой голографии. Перспективные исследования в области цифровой голографии направлены на повышение разрешения и достоверности получаемых результатов. Как видно из ряда публикаций, созданы методы повышения разрешения в цифровой голографии [1–3] вплоть до 40 линий на миллиметр [19]. Методы устранения нулевого порядка дифракции также активно совершенствуются, становятся менее ресурсоемкими и более эффективными [11], что позволяет получать более достоверные изображения исследуемых объектов без мешающего влияния нулевого порядка дифракции.

Большой интерес представляет также использование цифровой голографической микроскопии для реконструкции томографических изображений микрообъектов. Совместное использование голографического и томографического подходов позволяет достигнуть нового качества в исследовании биообъектов, т.е. получать амплитудную и фазовую информацию о различных слоях объекта, не прибегая к длительному сканированию образцов в аксиальной плоскости [18].

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации.

# Литература

- Swoger J., Corral M.M., Huisken J., Stelzer H.K. Optical scanning holography as a technique for highresolution three-dimensional biological microscopy // J. Opt. Soc. Am. A. – 2002. – V. 19. – P. 1910–1918.
- Mico V., Zalevsky Z., García-Martínez P., García J. Synthetic aperture superresolution with multiple off-axis holograms // J. Opt. Soc. Am. A. – 2006. – V. 23. – P. 3162–3170.
- Hillman T.R., Gutzler T., Alexandrov A.S., David D.D. High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy // Opt. Express. – 2009. – V. 17. – P. 7873– 7892.
- Zhang Y., Lu Q., Ge B., Zhao H., Sun Y. Digital holography and its applications // Proc. of SPIE. 2005. V. 5636. – P. 200–211.
- 5. Dubois F., Debeir O., Kiss R. Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration // Journal of Biomedical Optics. 2006. V. 11 № 5. P. 054032.
- 6. Zhou W., Yu Y., Duan Y., Asundi A. Phase reconstruction of live Human Embryonic Kidney 293 cells based on two off-axis holograms // Proc. of SPIE. 2009. V. 7375. P. 737502.
- 7. Kim M.K. Principles and techniques of digital holographic microscopy // SPIE Rev. 2010. V. 1. P. 018005-1-50.
- 8. Балтийский С.А., Гуров И.П., Де Никола С., Коппола Д., Ферраро П. Современные методы цифровой голографии // Проблемы когерентной и нелинейной оптики. СПб: СПбГУ ИТМО, 2004. С. 91–117.
- Schnars U., Jüptner W. Digital recording and numerical reconstruction of holograms // Meas. Sci. Technol. 2002. – V. 13. – R85–R101.
- 10. Lingfeng Yu, Yingfei An and Lilong Cai. Numerical reconstruction of digital holograms with variable viewing angles // Opt. Express. – 2002. – V. 10. – P. 1250–1257.
- 11. Junchang L., Qinghe S., Patrice T., Pascal P. Eliminating Zero-order Diffraction in the Digital Holography Wavefront Reconstruction with Adjustable Magnification // Proc. of SPIE. 2010. V. 7848. P. 78481Y.
- Dong E., Kang X., Chi J., He X. Phase shifting technique in digital holography // Proc. of SPIE. 2009. V. 7375. – P. 73749.
- 13. Sakaue K., Suzuki S., Takashi M. Recording caustic images by phase-shifting digital holography // Optical Engineering. 2006. V. 45. № 11. P. 115802.

- 14. Гендин В.Г. Определение малых смещений объектов методом цифровой голографии с использованием метода фазового сдвига и метода фильтрации высоких частот // Научно-технический вестник информационных технологий, механики и оптики. – 2012. – № 2 (78). – С. 28–32.
- 15. Chen Zh., Liu F., Gong W., Wang H. Microscopy based on digital lensless Fourier transforms holography // Proc. of SPIE. 2010. V. 7848. P. 784834.
- 16. Lu Q., Ge B., Chen Y., Zou J. Microstructure Testing with Digital Holography // Proc. of SPIE. 2009. V. 7511. P. 751105.
- 17. Sheoran G., Dubey S., Anand A., Mehta D.S., Shakher C. Swept-source digital holography to reconstruct tomographic images // Opt. Lett. 2009. V. 34. № 12. P. 1879–1881.
- Yu L., Chen Zh. Multi-wavelength digital holographic tomography based on spectral interferometry // Proc. of SPIE. – 2009. – V. 7184. – P. 1840.
- 19. Paturzo M., Merola F., Grilli S. De Nicola S., Ferraro P. Digital holography in combination with diffraction grating to get super-resolution // Proc. of SPIE. 2008. V. 6995. P. 699505.
- Гендин Владислав Геннадьевич
   –
   Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, аспирант, vlad.gendin@gmail.com

   Гуров Игорь Петрович
   –
   Санкт-Петербургский национальный исследовательский университет ин
- *туров игорь Петрович* Санкт-петероургский национальный исследовательский университет информационных технологий, механики и оптики, доктор технических наук, профессор, зав. кафедрой, gurov@mail.ifmo.ru