ЛАЗЕРНЫЕ И МЕДИЦИНСКИЕ ТЕХНОЛОГИИ

УДК 535:621.373.826:539 ИССЛЕДОВАНИЕ ПРОЦЕССОВ ВОЗДЕЙСТВИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ НА БИОЛОГИЧЕСКИЕ ТКАНИ И ЭЛЕМЕНТЫ ЛАЗЕРНЫХ СИСТЕМ

А.В. Беликов, А.В. Скрипник, Т.В. Струнина, К.В. Шатилова

Впервые представлены результаты обработки твердых тканей зуба человека импульсами YLF: Ег лазера с диодной накачкой. Длительность импульсов YLF: Ег лазера, генерирующего на длине волны 2,81 мкм, была около 1,4 мс. Впервые в экспериментах in vitro измерены эффективность удаления эмали и дентина зуба человека, диаметр, глубина и аспектное соотношение отверстий, формируемых в твердых тканях зуба человека под действием излучения этого лазера.

Ключевые слова: YLF: Ег лазер, дентин, эмаль, зуб человека, лазерное текстурирование, микросверление, эффективность удаления, аспектное соотношение.

Введение

Лазерные источники на кристаллах YAG: Er, YSGG: Cr, Er и YLF: Er считаются наиболее перспективными для обработки твердых тканей зуба, поскольку длины волн их излучения лежат вблизи пиков поглощения эмали и дентина [1-5]. Излучение YAG: Ег и YSGG: Cr, Ег лазеров с успехом используется для формирования полостей в эмали и дентине зуба при терапии кариеса перед постановкой пломб [6]. В работе [7] было показано, что текстуры, созданные излучением одномодового YAG: Ег лазера на поверхности твердых тканей зуба, способствуют повышению адгезии современных светополимеризующихся материалов к твердым тканям зуба. Для создания текстур в [7] использовался YAG: Ег лазер с энергией импульса 1 мДж, с длительностью импульса по полувысоте 100 мкс. Текстуры представляли собой регулярную последовательность из одиночных лазерных микрократеров (элементов текстур) диаметром 100 мкм и глубиной 45 мкм. В работе [8] описан оригинальный метод внутреннего отбеливания зуба человека [9] с применением излучения одномодового YSGG: Cr, Er лазера. Для доставки отбеливающего вещества (перекиси водорода) в дентин зуба используются микроканалы, сформированные под действием излучения одномодового YSGG: Cr, Ег лазера. Микроканалы обладают высоким аспектным соотношением (отношением глубины микроканала к его диаметру). В работе [10] было показано, что при помощи излучения одномодового YAG: Ег лазера возможно создание микроканалов с наиболее высоким аспектным соотношением.

Дальнейший прогресс использования лазерного излучения в стоматологии в значительной мере связан с поиском новых лазерных сред и методов их накачки. Применение диодной накачки для получения трехмикронного лазерного излучения позволяет существенным образом снизить массогабаритные характеристики лазерной стоматологической установки по отношению к современным аналогам, использующим ламповую накачку. Использование кристалла YLF: Ег в качестве активной среды лазера с диодной накачкой позволяет получать эффективную генерацию на различных длинах волн, в том числе 2,66 мкм, 2,71 мкм и 2,81 мкм [11]. В работе [12] представлены результаты исследования обработки твердых тканей зуба излучением YLF: Ег лазера с диодной накачкой и длиной волны генерации 2,66 мкм. Показано, что при сопоставимой длительности лазерных импульсов, эффективность удаления твердых тканей зуба излучением YLF: Ег лазера с длиной волны генерации 2,66 мкм. В 2 раза меньше эффективности их удаления излучением YAG: Ег лазера с длиной волны генерации 2,94 мкм.

В настоящей работе проводится исследование возможности обработки твердых тканей зуба, а именно, создание текстур и микроканалов излучением YLF: Ег лазера с диодной накачкой и длиной волны генерации 2,81 мкм. Исследованы геометрические параметры микрократеров, эффективность удаления эмали и дентина зуба человека, а также аспектное соотношение микроканалов, созданных излучением YLF: Ег лазера с длиной волны генерации 2,81 мкм. Проведено сравнение результатов с результатами, полученными в работе [12].

Материалы и методы

В экспериментах in vitro использовались зубы человека, принадлежащие одной возрастной категории людей (25–40 лет), удаленные по ортодонтическим показаниям. До начала эксперимента образцы хранились в 0,1% водном растворе тимола не более двух недель при температуре +4°C в защищенном от света месте.

В работе использовался макет YLF: Ег лазера с диодной накачкой (Dental Photonics Inc., США), работающего в режиме свободной генерации. На длине волны генерации 2,81 мкм длительность импульса генерации (по основанию) т составляла 1400 мкс, а энергия импульса достигала 50 мДж. На рис. 1 представлена осциллограмма импульса типичного для используемого в настоящем исследовании YLF: Ег лазера. Относительная величина амплитуды *A*' рассчитывалась как отношение текущего *i* -го значения амплитуды к максимальному.

При помощи алмазного диска на поверхности эмали и дентина формировалась плоская площадка. Лазерная обработка тканей зуба производилась в неконтактном режиме, без внешнего водяного охлаждения. Лазерное излучение фокусировалось на поверхности площадки собирающей линзой (f'=38 мм). Микрократеры в эмали или дентине зуба формировались в результате воздействия одиночного лазерного импульса ($N_p=1$) на поверхность сформированной ранее плоской площадки. Энергия одиночного лазерного импульса E_p для YLF: Er ($\lambda=2,81$ мкм) изменялась с помощью внерезонаторного ослабителя Френеля и в настоящем исследовании была приблизительно 1 мДж и 2 мДж. Микроканалы формировались под действием последовательности лазерных импульсов ($N_p=100$), следующих друг за другом с частотой около 1 Гц. При этом энергия одиночного лазерного импульса E_p для YLF: Er ($\lambda=2,81$ мкм) была приблизительно 30 мДж.

После создания на поверхности эмали и дентина микрократеров и микроканалов образцы фотографировались. Затем образцы шлифовались для формирования продольных сечений, принадлежащих плоскости, проходящей через центральную ось микрократеров (микроканалов). Продольные сечения микрократеров (микроканалов) фотографировались. Диаметр D_0 и глубина h_0 микрократеров и микроканалов измерялись по фотографиям их продольных сечений. Затем рассчитывался объем микрократера V_0 и эффективность удаления биоткани $\langle \Im \rangle$. Эффективность удаления биоткани $\langle \Im \rangle$ рассчитывалась как отношение объема микрократера V_0 к энергии, затраченной на его формирование. Также рассчитывалось аспектное соотношение микроканалов A как отношение диаметра микроканала к его глубине.

Результаты и обсуждение

Поскольку в ходе воздействия излучения YLF: Ег лазера с энергией 1 мДж разрушения эмали не были выявлены, то дальнейшие исследования проводились для излучения YLF: Ег лазера с энергией 2 мДж. Для расчета объема микрократеров его форма аппроксимировалась элементарными фигурами вращения. В исследовании были зафиксированы две характерные формы микрократеров: полусфера и усеченный конус.

Для микрократеров, имеющих форму полусферы, объем вычислялся как

$$V_{\rm nc} = \frac{1}{12} \cdot \pi D_0^3$$

١

где D_0 – диаметр отверстия в твердой ткани зуба. Для микрократеров, имеющих форму усеченного конуса, объем вычислялся как

$$V_{y\kappa} = \frac{1}{12} \cdot \pi h_0 \left(D_0^2 + D_0 D_1 + D_1^2 \right),$$

где h_0 – глубина кратера; D_0 – больший диаметр отверстия в твердой ткани зуба; D_1 – меньший диаметр отверстия в твердой ткани зуба.

На рис. 2 представлены результаты измерения геометрических параметров микрократеров в эмали и дентине, сформированных под действием одиночного импульса YLF: Ег лазера с диодной накачкой, длиной волны 2,81 мкм и $\tau \approx 1400$ мкс. На рис. 3 представлены результаты расчета объема микрократеров и эффективности удаления эмали и дентина одиночным импульсом YLF: Ег лазера с диодной накачкой, длиной волны 2,81 мкм и $\tau \approx 1400$ мкс. Таким образом, при формировании микрократеров излучением YLF: Ег лазера (λ =2,81 мкм, $\tau \approx 1400$ мкс, $E_p \approx 2$ мДж) в эмали D_0 =115±7 мкм, h_0 =32±4 мкм,

 V_0 =(16±6)×10⁻⁵ мм³, <Э>=82±20 мм³/кДж; в дентине D_0 =155±5 мкм, h_0 =26±2 мкм, V_0 =(19±4)×10⁻⁵ мм³, <Э>=100±21 мм³/кДж.

Внешний вид микроканала, сформированного в результате воздействия на твердые ткани зуба последовательности из ста импульсов YLF: Ег лазера с диодной накачкой, длиной волны 2,81 мкм и т \approx 1400 мкс, представлен на рис. 4. Толщина эмали в зоне обработки в данном случае составила 80 мкм. Наблюдается значительная карбонизация стенок практически по всей длине микроканала. Присутствие карбонизации может быть связано с тем, что длительность лазерного импульса $\tau \approx$ 1400 мкс существенно превышает время термической релаксации дентина [13], и за время действия лазерного импульса тепло, стимулированное лазерным излучением, не полностью отводится с продуктами абляции, проникает в дентин и вызывает его карбонизацию.

Рис. 2. Глубина h_0 (а) и диаметр D_0 (б) микрократеров, созданных в эмали и дентине излучением YLF: Er (λ =2,81 мкм; E_p ~2 мДж; τ ~1400 мкс) лазера

Рис. 3. Объем микрократеров V_0 (а) и эффективность удаления эмали и дентина $< \Im >$ (б) излучением YLF: Er (λ =2,81 мкм; E_p ~2 мДж; τ ~1400 мкс) лазера

Рис. 4. Внешний вид (а) и продольное сечение (б) микроканала, сформированного в дентине излучением YLF: Er (λ =2,81 мкм; τ ~1400 мкс; E_p ~30 мДж; N_p =100) лазера

Максимальная длина микроканала, сформированного в результате воздействия на твердые ткани зуба последовательности из ста импульсов YLF: Ег лазера с диодной накачкой, длиной волны 2,81 мкм и $\tau \approx 1400$ мкс, составила величину $h_0 = 1170 \pm 100$ мкм. Максимальный диаметр микроканала достигал $D_0 = 260 \pm 30$ мкм. Максимальное значение аспектного соотношения, полученное в рамках настоящего эксперимента, составило величину $A = 4,5\pm0,5$.

В работе [12] сообщается, что при формировании микрократеров излучением YAG: Ег лазера (λ =2,94 мкм, $\tau \approx 130$ мкс, $E_p \approx 1$ мДж) в эмали D_0 =99±3 мкм, h_0 =45±8 мкм, V_0 =(24±8)×10⁻⁵ мм³, <Э>=240±80 мм³/кДж; в дентине D_0 =101±1 мкм, h_0 =46±4 мкм, V_0 =(27±7)×10⁻⁵ мм³, <Э>=266±61 мм³/кДж. Очевидно, что диаметр микрократеров D_0 , созданных излучением YLF: Ег лазера, превышает D_0 для YAG: Ег лазера в 1,2 и 1,5 раза для эмали и дентина соответственно. Глубина микрократеров h_0 для YLF: Ег лазера в 1,4 и 1,8 раза меньше глубины микрократеров, созданных с помощью YAG: Ег лазера. Значение эффективности удаления эмали излучением YLF: Ег лазера в 2,9 раза меньше значения эффективности удаления эмали для YAG: Ег лазера. Значение эффективности удаления змали для YAG: Ег лазера. Значение эффективности удаления змали для YAG: Ег лазера. В 2,9 раза меньше значения эффективности удаления дентина излучением YLF: Ег лазера в 2,7 раза меньше значения эффективности удаления дентина излучением YLF: Ег лазера в 2,7 раза меньше значения эффективности удаления дентина излучением YLF: Ег лазера в 2,7 раза меньше значения эффективности удаления дентина излучением YLF: Ег лазера в 2,7 раза меньше значения эффективности удаления дентина для YAG: Ег лазера. В работе [10] сообщается, что для YAG: Ег лазера (λ =2,94 мкм, τ =105 мкс по полувысоте, E_p =15 мДж) аспектное соотношение формируемых микроканалов достигает A=2,4±0,12. Таким образом, аспектное соотношение микроканалов, созданных в твердых тканях зуба человека излучением YLF: Ег лазера (λ =2,81 мкм, $\tau \approx 1400$ мкс, $E_p \approx 30$ мДж), почти в 2 раза больше аспектного соотношения микроканалов, созданных излучением YAG: Ег лазера [10]. Полученные результаты могут быть обусловлены различием порогов разрушения [2, 14] и коэффициентов поглощения твердых тканей зуба на длинах волн 2,81 мкм и 2,94 мкм [3], а также разницей в длительностях импульсов лазеров [15, 16].

Заключение

Исследована возможность применения излучения YLF: Ег лазера для обработки твердых тканей зуба. При формировании микрократеров излучением YLF: Ег лазера ($\lambda = 2,81$ мкм, $\tau \approx 1400$ мкс, $E_p \approx 2$ мДж) в эмали $D_0=115\pm7$ мкм, $h_0=32\pm4$ мкм, $V_0=(16\pm6)\times10^{-5}$ мм³, $<3>=82\pm20$ мм³/кДж; в дентине $D_0=155\pm5$ мкм, $h_0=26\pm2$ мкм, $V_0=(19\pm4)\times10^{-5}$ мм³, $<3>=100\pm21$ мм³/кДж. Длина микроканала, сформированного в результате воздействия на твердые ткани зуба последовательности из ста импульсов YLF: Ег лазера с диодной накачкой, длиной волны 2,81 мкм и $\tau \approx 1400$ мкс, составила $h_0 = 1170\pm100$ мкм, диаметр микроканала достигал $D_0 = 260\pm30$ мкм, аспектное соотношение $A = 4,5\pm0,5$.

Литература

- Rechmann P., Hennig T. Influence of different laser wavelengths on the ablation characteristics of healthy dentin // Proc. of SPIE. Medical Applications of Lasers II. – 1994. – V. 2327. – P. 64–69.
- Belikov A.V., Erofeev A.V., Shumilin V.V., Tkachuk A.M. Comparative study of the 3 μm laser action on different hard tooth tissue samples using free running pulsed Er-doped YAG, YSGG, YAP and YLF lasers // Proc. of SPIE. Dental Applications of Lasers. – 1993. – V. 2080. – P. 60–67.
- Беликов А.В., Скрипник А.В., Шатилова К.В. Исследование динамики спектров поглощения эмали и дентина зуба человека при нагреве и абляции излучением субмиллисекундных импульсов эрбиевого лазера с длиной волны генерации 2,79 мкм // Оптика и спектроскопия. Биомедицинская оптика и спектроскопия. – 2010. – Т. 109. – № 2. – С. 1297–1302.
- 4. Беликов А.В., Жолобова Е.П., Скрипник А.В., Струнина Т.В. Исследование эффективности разрушения эмали зуба человека одномодовым излучением YAG: Ег лазера // Научно-технический вестник СПбГУ ИТМО. 2009. № 2(60). С. 51–58.
- 5. Беликов А.В., Храмов В.Ю. Перспективы развития инновационных направлений исследований в области лазерных систем и биомедицинских оптических технологий // Научно-технический вестник СПбГУ ИТМО. – 2010. – № 5(69). – С. 110–113.
- Coluzzi D.J., Convissar R.A. Atlas of laser applications in dentistry. Quintessence Publishing, Inc, 2007. 220 p.
- 7. Беликов А.В., Пушкарева А.Е., Скрипник А.В., Струнина Т.В., Шатилова К.В. Лазерное текстурирование поверхностей материалов // Изв. вузов. Приборостроение. 2010. Т. 53. № 4. С. 52–56.
- Альтшулер Г.Б., Беликов А.В., Скрипник А.В., Бобров А.П., Ткаченко Т.Б., Маслов В.В., Гайкова О.Н., Фельдштейн Ф.И. «М2 лазерная технология» и ее применение для отбеливания зубов. Результаты первых in vivo исследований // Инновационная стоматология. 2010. № 1. С. 44–54.
- 9. Гринволл Л. Методики отбеливания в реставрационной стоматологии. Иллюстрированное руководство. Пер. с англ. – М.: Издательский дом «Высшее образование и наука», 2003. – 304 с.
- Альтшулер Г.Б., Беликов А.В., Скрипник А.В., Шатилова К.В., Фельдштейн Ф.И. «М2 лазерная технология» и ее применение для создания микроканалов в зубе // Инновационная стоматология. 2010.
 № 1. С. 20–23.

А.В. Беликов, А.В. Скрипник, Т.В. Струнина, К.В. Шатилова

- 11. Иночкин М.В., Назаров В.В., Сачков Д.Ю., Хлопонин Л.В., Храмов В.Ю. Динамика спектра излучения Er: YLF-лазера в импульсно-периодическом режиме работы // Оптический журнал. 2010. Т. 77. № 7. С. 8–13.
- 12. Беликов А.В., Скрипник А.В., Шатилова К.В. Сравнительное исследование параметров элементов текстур, сформированных излучением YAG: Ег и YLF: Ег лазеров на поверхности твердых тканей зуба человека // Материалы 14-ой Международной молодежной научной школы по оптике, лазерной физике и биофизике. Проблемы оптической физики и биофотоники. Саратов: Новый Ветер, 2010. С. 20–26.
- Fried D., Visuri S.R., Featherstone J.D.B., Walsh J.T., Seka W., Glena R.E., McCormack S.M., Wigdor H.A. Infrared radiometry of dental enamel during Er: YAG and Er: YSGG laser irradiation Wigdor // J. Biomed. Optics. 1996. № 1. P. 455–465.
- 14. Altshuler G.B., Belikov A.V., Erofeev A.V. Laser treatment of enamel and dentine by different Er-lasers // Proc. of SPIE. 1994. V. 2128. P. 273–281.
- Apel C., Franzen R., Meister J., Sarrafzadegan H., Thelen S., Gutknecht N. Influence of the Pulse Duration of an Er: YAG Laser System on the Ablation Threshold of Dental Enamel // Lasers Med Sci. – 2002. – V. 17. – P. 253–257.
- Majaron B., Lukac M. Thermo-mechanical laser ablation of hard dental tissues: an overview of effects, regimes, and models // Proc. of SPIE. – 1999. – V. 3593. – P. 184–195.

Беликов Андрей Вячеславович	_	Санкт-Петербургский государственный университет информационных
		технологий, механики и оптики, кандидат физмат. наук, доцент,
		meddv@grv.ifmo.ru
Скрипник Алексей Владимирович	-	Санкт-Петербургский государственный университет информационных
		технологий, механики и оптики, кандидат физмат. наук, доцент,
		alesch_skrypnik@mail.ru
Струнина Татьяна Валерьевна	-	Санкт-Петербургский государственный университет информационных
		технологий, механики и оптики, инженер, struninatatiana@mail.ru
Шатилова Ксения Владимировна	-	Санкт-Петербургский государственный университет информационных
		технологий, механики и оптики, аспирант, kshatilova@mail.ru