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Аннотация. Исследованы оптические потери в области пересечения изготовленного из золота электрода и опти-
ческого волновода из тонкопленочного ниобата лития. Снизить поглощение оптического излучения в волноводе, 
вызванное слоем золота, возможно путем подбора толщины буферного слоя. С использованием метода конечных 
элементов и численных методов Мюллера и Ньютона–Рафсона определена зависимость оптических потерь в 
волноводе от толщины буферного слоя. Показано, что при изменении толщины буферного слоя от нуля до одного 
микрометра величина оптических потерь в области пересечения волновода и электрода уменьшается с 6·102 до 
10–3 дБ/см для фундаментальной TM-моды и с 102 до 10–3 дБ/см — для фундаментальной TE-моды. Корректность 
расчета подтверждается согласованностью данных, полученных тремя разными методами. Полученные результаты 
могут быть использованы при проектировании функциональных элементов фотонных интегральных схем (фазо-
вые, амплитудные модуляторы и др.) с минимальными оптическими потерями, обусловленными поглощением 
изготовленных из золота электродов. 
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Abstract. The optical losses in the intersection region of a gold electrode and a thin-film lithium niobate optical waveguide 
are investigated. It is possible to reduce the absorption of optical radiation in the waveguide by selecting the buffer layer 
thickness. Using the finite element method and the Mueller and Newton–Raphson numerical methods, the dependence 
of the optical losses in the waveguide on the buffer layer thickness is determined. It is shown that when the buffer 
layer thickness changes from zero to one micrometer, the optical losses in the intersection region of the waveguide 
and the electrode decrease from 6·102 to 10–3 dB/cm for the fundamental TM mode and from 102 to 10–3 dB/cm for 
the fundamental TE mode. The correctness of the calculation is confirmed by the consistency of the data obtained by 
three different methods. The results can be used in designing functional elements of photonic integrated circuits (phase, 
amplitude modulators, etc.) with minimal optical losses due to absorption of gold electrodes.
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Введение. Последние достижения в области фотоники позволяют создавать наборы от-
дельных базовых элементов фотонных интегральных схем на подложке из тонкопленочного 
ниобата лития на изоляторе (ТНЛ) [1], включая разветвители [2, 3], резонаторы [4, 5], филь-
тры [6], модуляторы [7, 8], линии задержки [9]. Набор базовых элементов формируется на одном 
кристалле для создания многофункциональных устройств и решения задач навигации [10], 
сенсорики [11], медицины [12]. При проектировании фотонных интегральных схем необходимо 
учитывать оптические потери, вносимые областью пересечения оптического волновода и элек-
трода, в которой происходит поглощение излучения металлом, что приводит к затуханию волны 
по закону Бугера–Ламберта–Бера. Поглощение связано с взаимодействием электромагнитной 
волны со свободными электронами внутри металла, к примеру, при расположении электрода 
из золота непосредственно над волноводом величина оптических потерь в электрооптическом 
устройстве на основе протонообменных волноводов [13, 14] достигает порядка 100 дБ/см для 
TM-моды и около 5 дБ/см — для TE-моды [15]. 

Для сокращения потерь между оптическим волноводом и электродом размещают слой 
диэлектрика, часто — слой оксида кремния (SiO2) [16, 17]. Такой диэлектрический слой в инте-
гральной оптике принято называть буферным [18] или оболочечным [19]. Согласно источникам 
[20, 21], типичная толщина буферного слоя из SiO2 для подложки ТНЛ Z-среза с изготовлен-
ными из золота электродами составляет 800–850 нм. В указанных выше работах не приведено 
исчерпывающих вводных данных (о показателях преломления, используемых методах), приня-
тых при расчетах, а также не выполнена оценка величины оптических потерь для конкретной 
толщины буферного слоя.

Цель настоящей работы заключается в численной оценке оптических потерь в волноводе, 
обусловленных поглощением слоем золота, в зависимости от толщины буферного слоя из SiO2. 

Рассматриваемая структура. Подложка ТНЛ представляет собой многослойную струк-
туру SiO2–LiNbO3–SiO2–Au c подложкой-носителем из кремния. При расчете параметры слоя 
кремния не учитываются, так как не оказывают влияния на распространение оптического 
излучения в волноводе. На поверхности кремния термически выращен слой SiO2 толщиной 
4,7 мкм, предотвращающий перекачку оптического излучения 
из ниобата лития (LiNbO3) в кремний. На поверхности SiO2 
располагается волноводный слой, представляющий собой тон-
кую пленку LiNbO3. 

Электрод и волновод при решении настоящей задачи пред-
ставляют собой металлический и оптический планарный волно-
вод соответственно. Между волноводным и электродным слоя-
ми находится буферный слой SiO2. Рассматриваемая структура 
схематически показана на рис. 1.

Au
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Рис. 1
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Формулы для расчета. Дисперсионное соотношение для планарной четырехслойной 
структуры с металлической оболочкой для случая TM-моды имеет вид [18]:

	 kxT – (m + 1)π + tg–1�
ns

nf
�

2

�
kx
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� + tg–1�

Em
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2��

kx

γm
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2γm = k0 N 2 – nbN 2 – Em , γb = k0 ,

	 (2)

где kx — проекция волнового вектора на вертикальную ось; k0 — волновое число; T = 600 нм — 
толщина волноводного слоя (LiNbO3); m = 0 — номер моды; ns = 1,446 — показатель пре-
ломления подложки (SiO2) [18]; nf — показатель преломления волноводного слоя (LiNbO3); 
N — эффективный показатель преломления четырехслойной структуры SiO2–LiNbO3–SiO2–
Au; γs — постоянная распространения излучения в подложке (проекция на вертикальную ось 
 волнового вектора); Em  — диэлектрическая проницаемость металла (комплексная величина, 
в общем случае металл проявляет свойства диэлектрика с отрицательной диэлектрической 
постоянной [18]), nb — показатель преломления буферного слоя SiO2, nb = ns = 1,446 [18]; 
δb —  толщина буферного слоя SiO2, варьируемый параметр. Оптические линии связи часто 
работают на  длинах волн 1,3 или 1,55 мкм [22], в настоящей работе все расчеты выполнены 
для λ = 1,55 мкм.

Величины kx, k0, γs и Em вычисляются по формулам:

	 2kx = k0 nf  – N 2,	 (3)

	 k0 = 
2�
λ

,	 (4)

	 2γs = k0 N 2 – ns ,	 (5)

	 2Em = (nm) = (n – iε)2,	 (6)

где nm — комплексный показатель преломления металла, n — действительная часть комплекс-
ного показателя преломления металла, ε — коэффициент экстинкции.

Ниобат лития является анизотропным материалом и обладает свойством двулучепреломле-
ния, поэтому его показатель преломления зависит от направления распространения оптического 
излучения и используемого при изготовлении волноводов кристаллографического среза [23]. 
Наиболее часто интегральные электрооптические устройства изготавливают на X- и Z-срезах 
ниобата лития [10, 24]. В настоящей статье рассмотрены оба случая. 

На рис. 2 схематически показаны области пересечения оптического волновода и электро-
да для разных направлений распространения излучения относительно кристаллографических 
осей LiNbO3 и расположения электродов для X-среза LiNbO3 (рис. 2, а, б) и для Z-среза LiNbO3 
(рис. 2, в, г). 

При повороте оптического волновода из LiNbO3 X-среза на 90° происходит изменение 
показателя преломления для необыкновенного луча nf

e на показатель преломления для обыкно-
венного луча nf

o в случае TE-мод, для TM-мод, вне зависимости от расположения оптического 
волновода (вдоль оси Y или Z), показатель преломления равен показателю преломления для 
обыкновенного луча. При повороте на 90° сформированного на Z-срезе LiNbO3 оптического 
волновода показатели преломления не изменяются. Показатели преломления, учитываемые при 
расчете, указаны в таблице. 
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Показатель преломления объемного LiNbO3 (для λ = 1,55 мкм) для обыкновенного луча 
равен nf

o = 2,211 [25], для необыкновенного — nf
e = 2,138 [25]. 

Значение комплексного показателя преломления золота для λ = 1,55 мкм было взято из 
[26]: Em = nm

2  = –115,12+11,259i.
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Методы. Для нахождения эффективного показателя преломления N четырехслойной 
структуры SiO2–LiNbO3–SiO2–Au применялись методы Мюллера, Ньютона–Рафсона, конечных 
элементов.

Метод Мюллера заключается в аппроксимации дисперсионного уравнения (1) полиномом 
второй степени [27]. Представив дисперсионное уравнение (1) как функцию F(N), возможно 
найти эффективный показатель преломления N по алгоритму: 

а) задаются три предполагаемых корня уравнения N0, N1, N2 и находятся значения функции, 
то есть F(N0), F(N1), F(N2). Полученные три начальных значения соответствуют трем точкам 
параболы {N0; F(N0)}, {N1; F(N1)}, {N2; F(N2)}. Значения N0, N1, N2 должны быть максимально 
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приближены к предполагаемому корню уравнения. Далее строится парабола и находится точка 
пересечения параболы с осью абсцисс. Точка пересечения dx является приближением для корня 
уравнения. Корнем уравнения является N3 = N2 + dx;

б) с целью проверки выполняется подстановка найденного корня в исходное уравнение. 
Если найденный корень удовлетворяет заданной точности, процесс останавливается — эффек-
тивный показатель преломления N найден. В противном случае найденный корень берется в 
качестве нового начального приближения и процесс повторяется. 

Метод Ньютона–Рафсона — для нахождения значения N необходимо провести аппрок-
симацию функции F(N) касательной [28]. Для этого сначала вычисляется производная функции 
F(N) и задается предполагаемое значение N0. 

Первое приближение к корню уравнения (1) находится по формуле:

	 N1 = N0 – 
F(N0)
F′(N0)

.	 (7)

Процесс повторяется до тех пор, пока не будет достигнута заданная точность:

	 Ni+1 = Ni – 
F(N0)
F′(N0)

.	 (8)

Метод конечных элементов [28]. Четырехслойная структура условно разделяется на мно-
жество конечных элементов; для каждого элемента решается волновое уравнение с использо-
ванием граничных условий П. Г. Дирихле. 

Результаты и обсуждение. Методы Мюллера и Ньютона–Рафсона были реализованы с 
помощью пакета прикладных программ MATLAB, расчет методом конечных элементов выпол-
нялся с помощью программного комплекса COMSOL Multiphysics.

Величина оптических потерь была рассчитана по формуле [18]: 

	 L = –20 log e–α ≌ 8,7α,	 (9)

где α — коэффициент поглощения. В настоящей статье рассматриваются только потери, обу-
словленные поглощением оптического излучения слоем металла. Потери, обусловленные по-
глощением в пленках LiNbO3, SiO2, рассеянием на дефектах волновода, не рассматриваются, 
поэтому:
	 α = Im(N).	 (10)

В результате вычислений с использованием метода конечных элементов были получены 
зависимости оптических потерь L от толщины буферного слоя δb для X- (рис. 3, а) и Z-среза 
LiNbO3 (рис. 3, б). 

Из рис. 3, а следует, что при отсутствии буферного слоя металл вносит оптические потери, 
равные L = 123,5 дБ/см для фундаментальной TE- и L = 628,5 дБ/см — для фундаментальной 
TM-моды при расположении оптического волновода вдоль оси Y на X-срезе LiNbO3. При рас-
положении оптического волновода вдоль оси Z на X-срезе LiNbO3 оптические потери состав-
ляют L = 125,1 дБ/см для фундаментальной TE- и L = 628,5 дБ/см — для фундаментальной 
TM-моды. Разница показателей преломления для обыкновенного и необыкновенного лучей 
Δnf = nf

o – nf
e = 0,073 приводит к разнице оптических потерь для TE-моды, равной 1,6 дБ/см. При 

повороте оптического волновода из LiNbO3 X-среза на 90° показатели преломления для TM-
моды не изменяются, поэтому величина оптических потерь для TM-моды остается неизменной. 

При расположении волновода вдоль оси Y на Z-срезе LiNbO3 и расположении волновода 
вдоль оси X- на Z-срезе LiNbO3 показатели преломления не изменяются. Согласно рис. 3, б, при 
отсутствии буферного слоя оптические потери, обусловленные поглощением в слое электрода, 
составляют L = 125,1 дБ/см для фундаментальной TE- и L = 598,8 дБ/см — для TM-моды. Из 
сравнения срезов X и Z LiNbO3 видно, что потери для фундаментальной TM-моды, обуслов-
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ленные поглощением слоем электрода, в случае X-среза выше, чем для Z-среза, на 29,7 дБ/см. 
При толщине буферного слоя 0,45 мкм поглощения оптического излучения слоем электрода 
для фундаментальной TE-моды практически не происходит. 
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Оптические потери для TM-моды превышают оптические потери для TE-моды прибли-
зительно на 500 дБ/см, поэтому дальнейшие расчеты были проведены только для TM-моды. 
Более высокие оптические потери TM-моды объясняются тем, что поле ТМ-моды характери-
зуется большим размером в вертикальном направлении, по сравнению с полем ТЕ-моды. Доля 
мощности ТМ-моды, сосредоточенной вблизи металлического электрода, выше, чем у ТЕ-моды, 
поэтому поглощение ТМ-моды выражено сильнее. 

С целью подтверждения правильности результатов, полученных методом конечных эле-
ментов, был проведен расчет для фундаментальной TM-моды в случае X- и Z-срезов LiNbO3 
методами Ньютона–Рафсона и Мюллера. На рис. 4, а показана зависимость оптических потерь 
от толщины буферного слоя для X-среза LiNbO3, распространение излучения вдоль оси Y. На 
рис. 4, б показана зависимость оптических потерь от толщины буферного слоя для X-среза 
LiNbO3, распространение излучения вдоль оси Z. На рис. 4, в показана зависимость оптических 
потерь от толщины буферного слоя для Z-среза LiNbO3. 

При увеличении толщины буферного слоя происходит снижение оптических потерь, о чем 
свидетельствуют рис. 4. Графики, полученные с использованием методов Ньютона–Рафсона и 
Мюллера, дают схожие результаты в части величины оптических потерь во всем рассматри
ваемом диапазоне значений толщины буферного слоя (от 0 до 2 мкм). 

При толщине буферного слоя 0,8 мкм оптические потери фундаментальной TM-моды в 
области пересечения электрода и волновода, расположенного вдоль оси Y на X-срезе LiNbO3, 
составляют 3·10–2 дБ/см. При увеличении толщины буферного слоя оптические потери умень-
шаются и при толщине 1,05 мкм составляют 2·10–3 дБ/см. В области пересечения электрода 
и волновода, расположенного вдоль оси Z на X-срезе LiNbO3, оптические потери для фунда-
ментальной TM-моды составляют порядка 10–2 дБ/см при толщине буферного слоя 0,8 мкм. 
При толщине 1,05 мкм величина оптических потерь фундаментальной TM-моды снижается до 
10–3 дБ/см. Полученные данные подтверждаются тремя методами. В случае Z-среза LiNbO3, 
согласно рис. 4, в, оптические потери для фундаментальной TM-моды минимальны при толщине 
буферного слоя 0,8 мкм и более.

Результаты носят оценочный характер, так как суммарная величина оптических потерь 
электрооптического устройства на основе ТНЛ зависит не только от конструкции, но и от тех-
нологических особенностей создания волновода.

Заключение. В статье показано, что при толщине буферного слоя SiO2 более 0,8 мкм в 
структуре SiO2–LiNbO3–SiO2–Au оптические потери фундаментальной ТМ-моды, связанные 
с поглощением оптического излучения металлом, снижаются до 10–3 дБ/см для X- и Z-срезов 
LiNbO3. При толщине буферного слоя SiO2 более 0,45 мкм слой золота почти не влияет на фун-
даментальную TE-моду вне зависимости от расположения оптического волновода относительно 
кристаллографических осей LiNbO3. 

При проектировании фотонных интегральных схем на основе ТНЛ рекомендуется ис-
пользовать буферный слой толщиной 0,8 мкм. Формирование буферного слоя толщиной более 
0,8 мкм нецелесообразно, так как увеличение толщины SiO2 приводит к росту механических 
напряжений в пленке. 
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