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Современные светоизлучающие диоды являются основой энергоэффективных световых 
приборов. Выбор в их пользу обусловлен сочетанием малого энергопотребления и высокой 
яркости, надежности и длительного срока службы в сравнении с другими источниками света. 
Эксплуатационные характеристики светодиодов существенно зависят от температуры активной 
зоны, электродов, мест паяных соединений, что влияет на срок их службы, величину создавае
мого светового потока, вероятность внезапных отказов [1–4]. 

Для исследования теплового режима светодиодных систем и повышения их устойчивости 
к тепловым воздействиям разрабатываются экспериментальные установки. При этом необходи-
мый уровень температуры исследуемых объектов обеспечивается с помощью климатических 
камер, термостатируемых полостей, элементов Пельтье [5–7]. Недостатками таких способов 
проведения исследований являются: влияние на результаты условий конвективно-лучистого 
теплообмена с воздухом в камере, элементами крепления и стенками, ограничение мощности 
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испытываемых светодиодов при использовании термоэлектрических охладителей, длительное 
время выхода на стационарный режим.

В настоящей работе представлена методика экспериментального исследования зависимо-
сти выходных характеристик светодиодов от температуры, когда тепловое воздействие реали-
зуется с помощью жидкостного термостата.

Для проведения исследований используется алюминиевая печатная плата с припаянными к 
ней светодиодами и разъемом электропитания. Суть методики состоит в том, что светодиодная 
плата устанавливается на плиту, температура которой обеспечивается за счет интенсивного 
конвективного теплообмена с жидкостным теплоносителем. Для этого к плите припаяна метал-
лическая трубка, по которой с помощью насоса термостата прокачивается жидкость требуемой 
температуры. В процессе эксперимента на светодиодную плату подается электропитание, а 
при наступлении стационарного режима фиксируются показания датчика светового потока и 
температуры компонентов системы — с помощью термопар.

Коэффициент полезного действия светодиодов составляет порядка 35 % [8], поэтому зна-
чительная часть потребляемой электрической мощности не преобразуется в световой поток, а 
выделяется в виде теплоты в соответствии с законом Джоуля. Этот тепловой поток передается 
с корпуса светодиода за счет конвективно-лучистого теплообмена в окружающую воздушную 
среду и за счет кондукции — на термостатированную плиту. Тепловой процесс, протекающий 
в рассматриваемой системе, будем считать стационарным, что позволяет использовать для его 
описания соотношение [9]:

	 P = σкл(tk – tf) + σλ(tk – tст),	 (1)

где σкл, σλ — тепловая проводимость от корпуса светодиода к окружающей среде и к термоста-
тированной плите соответственно, Вт/К; tk, tf, tст — температура корпуса светодиода, окружа-
ющей среды и термостатированной плиты, °С; P — мощность тепловыделений светодиода, Вт.

Проводимость σкл может быть оценена по соотношению:

	
1

αклSα
σкл = , 	 (2)

где Sα — площадь поверхности корпуса светодиода, участвующая в конвективном тепло
об мене, м2; для рассматриваемых условий эксперимента коэффициент теплоотдачи αкл в 
случае свободноконвективного и лучистого теплообмена не превышает 15 Вт/м2К [10, 11]. 
Проводимость σλ можно рассчитать по соотношению:

	
1

αэфSосн
σλ = ,	 (3)

где Sосн — площадь контакта основания корпуса светодиода с платой, м2; αэф — эффективный 
коэффициент теплообмена, характеризующий интенсивность кондуктивного теплопереноса 
к плате и термостатированной плите (для условий контакта прижатых через термопасту [12] 
плоских металлических поверхностей αэф = 5000–10 000 Вт/м2К [13]). 

Учитывая, что коэффициент теплообмена αэф превосходит αкл более чем в 100 раз, следует 
отметить, что при использовании предлагаемой методики эксперимента кондуктивная прово-
димость σλ будет существенно превосходить σкл. В таком случае основное влияние на тепловой 
режим светодиода будет оказывать термостатированная плита. Поэтому теплообмен корпусов 
светодиодов с окружающей воздушной средой можно считать пренебрежимо малым. Кроме 
того, при постановке эксперимента на свободных от светодиодов поверхностях плиты и платы 
будет установлена теплоизоляция.

Для проведения экспериментальных исследований разработана установка, схема которой 
представлена на рис. 1.
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Рис. 1

Алюминиевая плата 2 с установленными на ней светодиодами 1 прижата с помощью вин-
тов к термостатированной плите 3, изготовленной из высокотеплопроводного материала. С це-
лью уменьшения воздействия окружающей среды установлена теплоизоляционная оболочка 5, 
выполненная из листового полиэтилена толщиной 5 мм. Припаянная к плите металлическая 
трубка 4 подключена к патрубкам жидкостного термостата 6 марки LOIP LT-100. Питание 

светодиодов осуществляется от стабилизированного 
источника постоянного тока 7. Параметры электро-
питания, подаваемого на светодиоды, измеряются с 
помощью амперметра 8 и вольтметра 9. Температура 
элементов измеряется с помощью термоэлектриче-
ских термометров 10 типа хромель-копель, комму-
татора 11 и цифрового вольтметра 12 марки B7-78/1, 
а температура подаваемой жидкости — с помощью 
термометра термостата. Для проведения светотех-
нических измерений плита со светодиодами разме-
щается в специальной камере 15, где создаваемая 
ими освещенность регистрируется фотодатчиком 13 
люксметра ТКА-люкс 14. Внешний вид установки 
представлен на рис. 2 (1 — термостатируемая плита с 
установленными на ней светодиодами; 2 — жидкост-
ный термостат; 3 — источник питания; 4 — камера 
для светотехнических измерений).

На рис. 3 представлена схема расположения тер-
мометров на корпусе светодиодов 3–6, алюминиевой 
плате 2 и термостатируемой плите 1.

В ходе эксперимента на светодиоды подавалось 
электропитание напряжением 20 В и ток 200 мА, 
температура плиты изменялась в пределах 25–90 °С с 

помощью теплоносителя (дистиллированная вода), измерялась освещенность, создаваемая све-
тодиодами, и снимались показания датчиков температуры. Результаты представлены на рис. 4.

Освещенность, обеспечиваемая светодиодами, уменьшалась с ростом температуры и к 
концу эксперимента составляла порядка 80 % от начального значения. При температуре выше 
93 °С светодиоды считались неработоспособными, так как создаваемый световой поток не 
удовлетворял минимально допустимым значениям [14].
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Зависимость температуры компонентов экспериментальной установки от температуры 
жидкости приведена на рис. 5 (1 — корпус светодиодов; 2 — плата; 3 — термостатируемая 
плита). Обусловленная наличием контактных тепловых сопротивлений разность температуры 
корпусов светодиодов и платы составляла порядка 3 °С, оставаясь неизменной во всем исследо-
ванном диапазоне температур. Это подтверждает принятое допущение о пренебрежимо малом 
влиянии окружающей среды.

Разработанная методика проведения эксперимента была использована для оценки влия-
ния температуры на работоспособность светодиодов повышенной мощности и надежности. 
Представленная в работе экспериментальная установка может быть рекомендована для иссле-
дований светодиодных систем с плотностью тепловыделений до нескольких десятков киловатт 
на квадратный метр.
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