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Аннотация.  Представлены соотношения для определения эквивалентной линейной сложности (ЭЛС ) lS недво-
ичных последовательностей Гордона — Миллса — Велча (ГМВП), формируемых в произвольных расширенных 
конечных полях  GF[(pm)n]. Получены значения ЭЛС ГМВП для полей с основанием p = 3–17 с учетом параметра 
 Мn(rp), равного числу суммируемых последовательностей при формировании ГМВП. Показано, что параметр 
Мn(rp) зависит исключительно от степени n расширения поля и значений разрядов р-ичного представления числа 
rp, взаимно простого с порядком мультипликативной группы подполя GF(pm).

 Ключевые слова: конечные поля, эквивалентная линейная сложность, М- последовательности, ГМВ-последо
вательности

Ссылка для цитирования: Стародубцев В. Г., Самойлов Е. Б. Линейная сложность недвоичных последователь-
ностей Гордона — Миллса — Велча в произвольных конечных полях // Изв. вузов. Приборостроение. 2025. Т. 68, 
№ 5. С. 380–387. DOI: 10.17586/0021-3454-2025-68-5-380-387.

LINEAR COMPLEXITY OF NON-BINARY  
GORDON – MILLS – WELCH SEQUENCES IN ARBITRARY FINITE FIELDS

V. G. Starodubtsev*, E. B. Samoylov

A. F. Mozhaisky Military Space Academy, St. Petersburg, Russia
* vka@mil.ru

The relations for determining the equivalent linear complexity (ELC) lS of non-binary Gordon — Mills — Welch sequences 
(GMWS) formed in arbitrary extended finite fields GF[(pm)n] are presented. The values of the ELC of the GMWS for 
fields with a base p = 3 -17 are obtained, taking into account the parameter Мn(rp) equal to the number of summable 
sequences during the formation of the GMWS. It is shown that the parameter Мn(rp) depends exclusively on the degree 
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Одним из ключевых направлений в развитии цифровых систем радиопередачи является 
использование многопозиционных фазоманипулированных сигналов с расширенным спектром, 
формируемых на основе недвоичных псевдослучайных последовательностей (ПСП) [1–4]. 
В помехоустойчивых системах приоритет отдается сигналам с оптимальными корреляцион-
ными свойствами и высокой степенью структурной скрытности [5–9]. Типичным примером 
ПСП, одновременно удовлетворяющим предъявляемым требованиям, являются недвоичные 
последовательности Гордона — Миллса — Велча (ГМВП), которые представляют собой ми-
нимаксные последовательности с двухуровневой периодической корреляционной функцией. 
Эти последовательности характеризуются высокой степенью структурной скрытности, что 
определяется их эквивалентной линейной сложностью lS [10–14].
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 Недвоичные  последовательности  ГМВП  создаются  на  основе  конечных  полей  
GF[(pm)n] = GF(pS) (S = mn). Символы di недвоичных последовательностей определяются как 
[2, 10, 14]

	 di = trm1[trmn,m(αi))r], 1 ≤ rp < pm – 1, НОД(rp, pm – 1) = 1,	 (1)

где tra,b(·) — след элемента, принадлежащего полю GF(pa), в поле GF(pb); α ∈ GF[(pm)n] — при-
митивный элемент; НОД (a, b) — наибольший общий делитель чисел a и b; rp — p-ичное число.

Для двоичных ГМВП получено выражение для ЭЛС [10, 12, 13 ]

	 lS = mnz(r2),	 (2)

где z(r2) — количество единиц в двоичном представлении числа rp = r2 в (1).
При проведении анализа структурной скрытности ГМВП выражение (2) представим в виде

	 lS = mnzMn(rp),	 (3)

где Mn(rp) — число суммируемых последовательностей при формировании ГМВП.
Данное выражение может быть использовано как для двоичных, так и недвоичных после-

довательностей. Для двоичных ГМВП параметр Mn(r2) определяется как

	 Mn(r2) = nz(r2)–1.	 (4)

Соотношения (2)–(4) позволяют определить структурную скрытность двоичных ГМВП 
при всех допустимых значениях параметров m, n и r.

Суммируемые последовательности образуются на основе примитивных или неприводи-
мых полиномов степени S = mn. Таким образом, для заданного конечного поля GF[(pm)n] задача 
определения линейной сложности недвоичных ГМВП сводится к вычислению параметра Mn(rp).

Формула (3) применима для определения ЭЛС недвоичных ГМВП при условии вычисления 
Mn(rp) для допустимых значений p ≥ 3  и степени расширения поля n ≥ 2.

Для n = 2 выражение для параметра Mn(rp) получено в [15]:

	 M2(rp) = 0,5 ∏
p–1

i=1
(i + 1)ti,	 (5)

где ti — кратность разрядов (равных i) в p-ичном представлении параметра rp.
Для n ≥ 3 соотношения для вычисления параметра Mn(rp) и, соответственно, линейной 

сложности недвоичных ГМВП в известной литературе отсутствуют. 
Таким образом, получение общих выражений для вычисления линейной сложности lS 

недвоичных ГМВП, формируемых в произвольных конечных полях GF[(pm)n] для значения 
параметра n ≥ 3, является новой научной задачей, решение которой вносит значимый вклад в 
теорию передачи информации.

Определим выражение для параметра Mn(rp) при n = 3. Запишем в общем виде p-ичное 
представление параметра rp:

	 rp = pkgk + pk–1gk–1 + … + pg1 + g0,	 (6)

где gi = 0, 1, …, p – 1 — коэффициенты разложения, k — количество разрядов в p-ичном пред-
ставлении параметра rp.

Известно, что для различных p ≥ 3 десятичное представление разных чисел rp может иметь 
одинаковое p-ичное представление. Например, десятичные значения r10 = 11 при p = 3 и r10 = 23 
при p = 11 имеют одинаковые p-ичные представления r3 = r11 = 21, т. е. g1 = 2, g0 = 1. 
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С учетом разложения (6) выражение (5) для параметра Mn(rp) может быть представлено 
в виде

	 M2(rp) = 0,5∏
k

i=0
(gi + 1).	 (7)

Рассмотрим значения параметра Mn(rp) при однора зрядном и двухразрядном представлении 
rp = pg1 + g0, которые приведены в табл. 1. Будем использовать запись М3(g1, g0) для обозна-
чения зависимости параметра от коэффициентов разложения. Данные в таблице получены c 
помощью программы вычисления индексов децимации [16] для различных сочетаний пара-
метров p ≤ 13, m ≤ 4, n = 3 и допустимых значений параметра rp, удовлетворяющих условию  
НОД (rp, pm – 1) = 1. В скобках в таблице приведены значения М3(g1, g0), полученные аналити-
ческим способом на основе анализа выявленных закономерностей.

Таблица 1

g1, g0 М3(g1, g0) g1, g0 М3(g1, g0) g1, g0 М3(g1, g0) g1, g0 М3(g1, g0)

0,1 1 1,2 6 = 1·2·3 2,1 6 = 2·1·3 3,2 20 = 2·5·2
0,3 4 1,4 15 = 1·3·5 2,3 20 = 2·2·5 3,4 50 = 2·5·5
0,5 7 1,6 28 = 1·4·7 2,5 42 = 2·3·7 3,6
0,7 12 1,8 45 = 1·5·9 2,7 72 = 2·4·9 3,8 150 = 2·5·15
0,9 19 1,10 66 = 1·6·11 2,9 110 = 2·5·11 3,10 220 = 2·5·22
0,11 26 1,12 (91 = 1·7·13) 2,11 156 = 2·6·13 3,12
0,13 (35) 1,14 (120 = 1·8·15) 2,13 210 = 2·7·15 3,14 (400 = 2·5·40)
0,15 (46) 1,16 (153 = 1·9·17) 2,15 (272 = 2·8·17) 3,16 (510 = 2·5·51)

4,1 15 = 5·1·3 5,2 42 = 7·2·3 6,1 28 = 4·7·1 7,2 72 = 12·2·3
4,3 50 = 5·2·5 5,4 105 = 7·3·5 6,3 7,4 180 = 12·3·5
4,5 105 =5·3·7 5,6 196 = 7·4·7 6,5 196 = 4·7·7 7,6 336 = 12·4·7
4,7 180 = 5·4·9 5,8 315 = 7·5·9 6,7 336 = 4·7·12 7,8 (540 = 12·5·9)
4,9 275 = 5·5·11 5,10 6,9 7,10 792 = 12·6·11
4,11 (390 = 5·6·13) 5,12 (637 = 7·7·13) 6,11 728 = 4·7·26 7,12 1092 = 12·7·13
4,13 (525 = 5·7·15) 5,14 (840 = 7·8·15) 6,13 (980 = 4·7·35) 7,14 (1440 = 12·8·15)
4,15 (680 = 5·8·17) 5,16 (1071 = 7·9·17) 6,15 7,16 (1836 = 12·9·17)

8,1 45 = 15·1·3 9,2 110 = 5·11·2 10,1 66 = 22·1·2 11,2 156 = 26·2·3
8,3 150 = 15·2·5 9,4 275 = 5·11·5 10,3 220 = 22·2·5 11,4 (390 = 26·3·5)
8,5 315 = 15·3·7 9,6 10,5 11,6 (728 = 26·4·7)
8,7 (540 = 15·4·9) 9,8 825 = 5·11·15 10,7 (792 = 22·4·9) 11,8 1170 = 26·5·9
8,9 825 = 15·5·11 9,10 1210 = 5·11·22 10,9 1210 = 22·5·11 11,10 (1716 = 26·6·11)
8,11 1170 = 15·6·13 9,12 10,11 (1716 = 22·6·13) 11,12 2366 = 26·7·13
8,13 (1575 = 15·7·15) 9,14 (2200 = 5·11·40) 10,13 (2310 = 22·7·15) 11,14 (3120 = 26·8·15)
8,15 (2040 = 15·8·17) 9,16 (2805 = 5·11·51) 10,15 11,16 (3978 = 26·9·17)

Анализ данных, приведенных в табл. 1, показал, что число М3(g1, g0) зависит исключи-
тельно от параметра rp, а именно от значений разрядов его p-ичного представления. Линейная 
сложность ГМВП в соответствии с (3) дополнительно определяется параметром m, т. е. степе-
нью расширения подполя GF(pm).

Например, для полей GF[(33)3] с rp = 510 = 123 и GF[(52)3] с rp = 710 = 125 параметр 
М3(g1, g0) = 6, а ЭЛС соответственно равны lS = 54 и lS = 36. Для полей GF[(52)3] с rp = 1910 = 345 
и GF[(72)3] с rp = 2510 = 347 параметр М3(g1, g0) = 50, а ЭЛС равны lS = 300.
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Для допустимых значений параметра rp значения разрядов g1 и g0 имеют разную четность, 
так как в противном случае не будет выполняться условие НОД(rp, pm – 1) = 1.

На основе выявленных закономерностей для значений М3(g1, g0), приведенных в табл. 1, 
получим 
	 М3(g1, g0) = 0,5L3(g1)(g0 + 1)(g0 + 2),	 (8)

где L3(g1) = (g1 + 2)!/(6g1!) — коэффициент для старшего разряда р-ичного разложения параметра rp.
Для одноразрядных нечетных значений rp = g0 (см. табл. 1) параметр М3(g0) вычисляется 

округлением коэффициента L3(g0) до ближайшего большего целого:

	 М3(g0) = �L3(g0)�.	 (9)

При вычислениях необходимо учитывать ограничение

	 НОД(g1, g0) = 1,	 (10)

вследствие которого отсутствуют данные в соответствующих ячейках табл. 1. 
Для допустимых значений параметра rp выполняется р авенство

	 М3(g1, g0) = М3(g0, g1).	 (11)

Например, M3(4, 7) = M3(7, 4) = 180, M3(8, 9) = M3(9, 8) = 825.
При p = 3 для трех и более разрядных представлений параметра rp были получены значения 

М3(rp), приведенные в табл. 2 [16].
Таблица 2

rp М3(rp) rp М3(rp) rp М3(rp)

111 9 1112 54 11122 324
122 36 1222 216 12222 1296

Из сравнения выражений (7) для n = 2 и (8) для n = 3 следует, что число множителей 
пропорционально возрастает с увеличением как параметра n, так и числа разрядов p-ичного 
представления параметра rp. Для трехразрядных значений число М3(g2, g1, g0) определяется 
следующим образом:

	 М3(g2, g1, g0) = 0,25L3(g2)(g1 + 1)(g1 + 2)(g0 + 1)(g0 + 2).	 (12)

Например, число М3(1, 2, 2) = 0,25L(1)(2 + 1)2(2 + 2)2 = 36, что соответствует значению в 
табл. 2.

В общем случае для k-разрядных значений параметра rp число M3(rp) имеет следу ющий 
вид:

	 М3(gk, gk–1, …, g1, g0) = 2–kL3(gk)∏
k

i=1
(gk–i + 1)(gk–i + 2).	 (13)

Например, М3(1, 1, 1, 2, 2) = 2–4L3(1)(1 + 1)2(1 + 2)2(2 + 1)2(2 + 2)2 = 324.
Перейдем к рассмотрению случая n = 4. Для отдельных значений параметра rp результаты 

вычисления числа M4(rp) приведены в  табл. 3 [16].
Экстраполяция (7), (8), (12), (13), а также результатов, представленных в табл. 1–3, позволи-

ла получить общее выражение для вычисления параметра Mn(rp) при произвол ьном значении n 
и общем ограничении НОД(gk, gk–1, …, g1, g0) = 1:

	 М3(gk, gk–1, …, g1, g0) = Ln(gk)[(n – 1)!]–k∏
k

i=1
  ∏
n–1

j=1
(gk–i + j).	 (14)
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Таблица 3

rp М4(rp) rp М4(rp) rp М4(rp) rp М4(rp)

3 5 5 14 7 30 9 55
1,2 10 1,4 35 1,6 84 2,1 10
2,3 50 2,5 140 3,2 50 1,2,2 100

Значения коэффициента Ln(gk) были получены  на  основании (14) с учетом того, что 
Ln(1) = 1 для всех значений n, и приведены в табл. 4. В этой таблице некоторые значения па-
раметра Ln(gk) могут быть нец елыми. В этом случае знаменатели дробей определяются через 

НОД(gk, n) > 1: например, L6(12) = 1031
3
1

; L7(7) = 245
7
1

.

 Таблица 4

Ln(gk)

gk
n

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
2 1 1,5 2 2,5 3 3,5 4 4,5 5
3 1 2 3,33 5 7 9,33 12 15 18,33
4 1 2,5 5 8,75 14 21 30 41,25 55
5 1 3 7 14 25,2 42 66 99 143
6 1 3,5 9,33 21 42 77 132 214,5 333,67
7 1 4 12 30 66 132 245,14 429 715
8 1 4,5 15 41,25 99 214,5 429 804,38 1430
9 1 5 18,33 55 143 333,67 715 1430 2701,11

10 1 5,5 22 71,5 200,2 500,5 1144 2431 4862
11 1 6 26 91 273 728 1768 3978 8398
12 1 6,5 30,33 113,75 364 1031,33 2652 6298,5 13996,67
13 1 7 35 140 476 1428 3876 9690 22610
14 1 7,5 40 170 612 1938 5537,14 14535 35530
15 1 8 45,33 99 775,2 2584 7752 21318 54479,33
16 1 8,5 51 242,25 969 3391,5 10659 30644,63 81719
17 1 9 57 285 1197 4389 14421 43263 120175
18 1 9,5 63,33 332,5 1463 5608,17 19228 60087,5 173586,11

Для перехода к целым числам умножим элементы каждой gk-й строки на значение пара-
метра gk:

	 Ln*(gk) = gkLn(gk).	 (15)

Мод ифицированные значения коэффициентов представлены в табл. 5.
Анализ модифицированных значений коэффициентов показал, что элементы столбцов 

матрицы представляют собой последовательности n-угольных пирамидальных чисел, опреде-
ляемых следующим образом:

	 Ln*(gk) = 
(gk – 1)!n!

(gk + n – 1)!
.	
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Таблица 5

Ln*(gk)

gk
n

1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8 9 10
3 3 6 10 15 21 28 36 45 55
4 4 10 20 35 56 84 120 165 220
5 5 15 35 70 126 210 330 495 715
6 6 21 56 126 252 462 792 1287 2002
7 7 28 84 210 462 924 1716 3003 5005
8 8 36 120 330 792 1716 3432 6435 11440
9 9 45 165 495 1287 3003 6435 12870 24310

10 10 55 220 715 2002 5005 11440 24310 48620
11 11 66 286 1001 3003 8008 19448 43758 92378
12 12 78 364 1365 4368 12376 31824 75582 167960
13 13 91 455 1820 6188 18564 50388 125970 293930
14 14 105 560 2380 8568 27132 77520 203490 497420
15 15 120 680 1485 11628 38760 116280 319770 817190
16 16 136 816 3876 15504 54264 170544 490314 1307504
17 17 153 969 4845 20349 74613 245157 735471 2042975
18 18 171 1140 5985 26334 100947 346104 1081575 3124550

Для обратного перехода к коэффициентам Ln(gk) необходимо элементы каждой строки 
таблицы разделить на значения gk, что соответствует соотношению 

	 Ln(gk) = 
gk!n!

(gk + n – 1)!
.	 (16)

После под становки (16) в (14) получим окончательное выражение для числа суммируемых 
последовательностей Mn(rp) при формировании ГМВП:

	 Mn(rp) = Mn(gk, gk–1, …, g0) = 
gk!n![(n – 1)!]k

(gk + n – 1)!
 ∏

k

i=1
  ∏
n–1

j=1
(gk–i + j).	 (17)

Вследствие того  что все суммируемые последовательности формируются на основании 
неприводимых полиномов степени mn, линейная сложность ГМВП в соответствии с (3) будет 
определяться как

	 lS = mnMn(rp) = 
gk![(n – 1)!]k+1

m(gk + n – 1)!
 ∏

k

i=1
  ∏
n–1

j=1
(gk–i + j).	 (18)

Легко показать , что выражения (2) и (3) являются частным случаем выражений (17) и 
(18) для двоичных последовательностей при p = 2 и gk = 1. Например, для ГМВП с периодом 
N = 4095, формируемой в поле GF[(24)3] с параметрами r1 0 = 7, r2 = 111, m = 4, n = 3, число 
M4(1, 1, 1) в с оответствии с выражением (3) равно M4(1, 1, 1) = 3z(111)–1 = 32 = 9, а в соответствии 

с (17) оно также равно M4(1, 1, 1) = 
1!3![(2)!]2

(1 + 3 – 1)!
 ∏

2

i=1
 ∏

2

j=1
(g2–i + j) = 2–2(1 + 1)2(1 + 2)2 = 9. 
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Определим значения ЭЛС для различных значений параметров p, m, n и rp. Например, 
пусть требуется найти ЭЛС для пятеричной ГМВП, сформированной в поле GF[(54)3] с перио-
дом N = pmn – 1 = 54·3 – 1 = 244 140 625 и параметром r10 = 449, r5 = 3244.

Параметр r10 = 449 удовлетворяет условию НОД(449; 244140625) = 1. Число суммируемых 
последовательностей и, соответственно, выигрыш в структурной скрытности по сравнению с 
М- последовательностями определяется как

	 M3(3, 2, 4, 4) = 
3!3!23

(3 + 3 – 1)!
 ∏

3

i=1
 ∏

2

j=1
(g3–i + j) = 

3!3!23

5!
(2 + 1)(2 + 2)(4 + 1)2(4 + 2)2 = 4500.

Тогда ЭЛС пятеричной ГМВП с периодом N = 244 140 625 при r10 = 449 равна

	 lS = mnMn(rp) = 4·3·4500 = 5400.	

Таким образом, представлены формулы для расчета линейной сложности lS недвоичных 
ГМВП, создаваемых в произвольных конечных полях GF[(pm)n], а также для числа Mn(rp) сум-
мируемых последовательностей. Параметр Mn(rp) численно соответствует приросту структурной 
скрытности по сравнению с широко применяемыми М-последовательностями. Представленные 
формулы являются обобщением известных выражений для расчета ЭЛС двоичных последо-
вательностей. Полученные результаты могут быть использованы при разработке последова-
тельностей с заданными структурными и корреляционными характеристиками, а также для 
формирования требований к структурной скрытности сигналов с расширенным спектром при 
проектировании помехозащищенных систем передачи цифровой информации по радиоканалам.
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