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Аннотация. Предложен адаптивный наблюдатель для билинейной нестационарной динамической системы в 
условиях частичной параметрической неопределенности. Задача решается в предположении, что неизвестные 
параметры содержатся в матрице/векторе при сигнале управления. Ключевая идея предложенного алгоритма 
состоит в новой параметризации объекта, которая основана на двух функциях, одну из которых можно найти 
аналитически, используя известные и измеряемые сигналы системы. Применение линейных фильтров позволяет 
привести систему к виду линейной статической регрессионной модели, содержащей неизвестные постоянные 
параметры; на следующем этапе неизвестные параметры оцениваются с помощью градиентного алгоритма. Так 
как неизвестные постоянные параметры математически связаны с неизвестными начальными условиями вектора 
состояния и неизвестными переменными параметрами в матрице/векторе управления, то на основе полученных 
оценок выведены оценки неизвестных компонент вектора состояния и оценка неизвестного параметра. Показано 
преимущество предложенного метода, состоящее в возможности его применения к достаточно широкому классу 
билинейных систем, к которым, в частности, могут быть сведены системы Эйлера — Лагранжа, описывающие 
множество реальных технических объектов и робототехнических систем.
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Abstract: An adaptive observer for a bilinear nonstationary dynamic system under partial parametric uncertainty is 
proposed. The problem is solved under the assumption that the unknown parameters are contained in the matrix/
vector at the control signal. The key idea of the proposed algorithm is a new parameterization of the object based on 
two functions, one of which can be found analytically using the known and measured signals of the system. The use of 
linear filters allows us to reduce the system to the form of a linear static regression model containing unknown constant 
parameters; at the next stage, the unknown parameters are estimated using a gradient algorithm. Since the unknown 
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constant parameters are mathematically related to the unknown initial conditions of the state vector and the unknown 
variable parameters in the matrix/vector of control, the estimates of the unknown components of the state vector and the 
estimate of the unknown parameter are derived based on the estimates obtained. It is shown that the proposed method 
advantage consists in the possibility of application to a sufficiently wide class of bilinear systems, to which, in particular, 
Euler-Lagrange systems describing many real technical objects and robotic systems can be reduced.
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Введение. При решении задач управления динамическими системами важным этапом 
является получение информации об их состоянии, для чего используются первичные изме-
рительные преобразователи (датчики). Однако не во всех случаях полный вектор состояния 
возможно измерить. Более того, наличие дополнительных датчиков в системе может увеличи-
вать ее стоимость, а также снижать надежность системы и вносить дополнительные помехи, 
вызванные самими датчиками. В случаях когда невозможно или нецелесообразно размещать 
набор измерительных средств, позволяющий измерять полный вектор состояния, для оценки 
неизвестных переменных состояния применяются наблюдатели.

Для линейных стационарных систем известно множество эффективных методов синтеза 
наблюдателей (см., например, [1, 2]). Наряду с этим интерес к проблеме синтеза наблюдателей 
для нестационарных систем не угасает, в изданиях, посвященных анализу и синтезу систем 
автоматического управления, активно публикуются новые исследования. В [2] был рассмотрен 
синтез эллипсоидных наблюдателей и алгоритмов, позволяющих обеспечить оптимальные эл-
липсоидные оценки переменных состояния системы и ее неизвестных параметров. 

Проблема разработки наблюдателей состояния для нелинейных систем на данный момент 
изучена меньше, что вызвано сложностью этого класса систем и большим разнообразием ма-
тематических моделей. В связи с этим в научном сообществе привлечено особое внимание к 
развитию исследований в области синтеза наблюдателей для нелинейных систем (см., напри-
мер, [3, 4]).  

Важным аспектом, усложняющим разработку новых алгоритмов, является тот факт, что 
система не всегда может быть описана математической моделью с постоянными параметра-
ми. В некоторых случаях параметры системы могут изменяться со временем под влиянием 
как внутренних, так и внешних факторов, например, таких, как старение элементов системы, 
воздействие экстремально высоких или низких температур, изменение массогабаритных па-
раметров в процессе эксплуатации. Таким образом, поведение сложных динамических систем 
наиболее точно описывается с помощью математических моделей, содержащих переменные 
параметры. Этим обусловлена актуальность исследований, посвященных синтезу наблюдателей 
для нестационарных систем.

Наблюдатели состояния (в том числе, состояния нелинейных нестационарных систем) нахо-
дят применение не только при синтезе законов управления. Их использование имеет также само-
стоятельное значение, например при разработке средств контроля технического состояния [5, 6]. 

Заслуживает отдельного внимания такой подкласс нелинейных систем, как билинейные 
системы. Билинейными называются системы, линейные по каждому из аргументов. Они распро-
странены в различных прикладных задачах. В частности, к форме билинейной динамической 
системы могут быть сведены системы, описываемые уравнением Эйлера — Лагранжа [7], т. е. 
широкий круг реальных технических объектов, таких как роботы-манипуляторы, мобильные 
роботы и т. д.

Существуют некоторые наиболее распространенные подходы, применяемые при постро-
ении наблюдателей. Одним из таких подходов является приведение исходной математической 
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динамической модели системы к виду регрессионного статического уравнения (см., напри-
мер, [8, 9]) с последующей идентификацией неизвестных параметров и восстановлением не-
известного вектора состояния на основе полученных оценок. 

В настоящей статье рассматривается задача разработки адаптивного наблюдателя состо-
яния для системы, относящейся к классу билинейных и содержащей неизвестные переменные 
параметры. Задача решена с применением описанного выше подхода, т. е. путем сведения ис-
ходной модели к виду линейной регрессии. 

Постановка задачи . Рассматривается нелинейная нестационарная система вида

	 ẋ(t) = A0x(t) + B0φ(x(t), θ0(t))x(t) + B(θ)u(t), x(0) = x0 ∈ ℝn, t ≥ 0; y(t) = CT(t)x(t),	 (1)

где x(t) ∈ ℝn — неизвестный вектор состояния; u(t) ∈ ℝn — известный входной сигнал; 
y(t) ∈ ℝ — измеряемый выходной сигнал; матрицы A0 ∈ ℝn×n, B0 ∈ ℝn и CT ∈ ℝn являются из-
вестными и постоянными; B(θ) ∈ ℝn — вектор неизвестных переменных параметров θ(t) ∈ ℝn; 
φ(x(t), θ0(t)) ∈ ℝ — неизвестная функция, содержащая в своей структуре вектор известных 
параметров θ0(t) ∈ ℝnθ0.

Для системы (1) ставится задача синтеза адаптивного наблюдателя вида

	 χ(t) = F(χ(t), u(t), y(t));

	  x(t)
θ(t)

  = S(χ(t), u(t), y(t)),
	 (2)

где χ(t) ∈ ℝnχ и все сигналы ограничены. 
Адаптивный наблюдатель (1), (2) должен обеспечивать сходимость оценок переменных 

состояния и неизвестных параметров к реальным значениям

	 x(t) = x(t), θ(t) = θ(t)	 (3)

для всех значений вектора начальных условий x0 ∈ ℝn.
Для решения поставленной задачи введены следующие допущения.
Д о п у щ е н и е  1. Функция φ(x(t), θ0(t)) является линейной относительно ар-

гумента x(t), также интеграл для φ(x(t), θ0(t)) является известным или измеряемым, т. е.  

φint = ∫
t

0
φ(x(s), θ0(s))ds — известная функция.

Д о п у щ е н и е  2. Матрицы A0 и B0 заданы в фробениусовой канонической управляемой 
форме, т. е.

	 A0 =  

	 0	 1	 0	 ⋯	 0
	 0	 0	 1	 ⋯	 0
	 ⋮	 ⋮	 ⋮	 ⋯	 ⋮
	 0	 0	 0	 ⋯	 1
	–an	 –an–1	 –an–2	 ⋯	 –a1

  , B0 = [0n×(n–1) BI], BI =  

0
0
⋮
0
1

  .	 (4)

Замечание. Следует отметить, что допущения 1, 2 могут показаться слишком специфич-
ными и абстрактными, однако на самом деле существует множество математических моделей 
реальных объектов и систем, удовлетворяющих представленным допущениям. Так, например, 
к такому виду моделей можно свести хорошо известные в робототехнике уравнения механиче-
ских систем, записанные в форме Эйлера — Лагранжа. 

Для подтверждения сказанного рассмотрим в качестве примера математическую модель 
ноги робота [10], для которой уравнения Эйлера — Лагранжа могут быть записаны следующим 
образом:
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m1q#1 = m1q1q2

2 + u1;
m1q1

2q#2 = –2m1q1q1q2 + u2;
m2q#3 = –u2,

�	 (5)

где q1, q2, q3 — измеримые обобщенные координаты (в стандартной постановке задачи в отно-
шении систем Эйлера — Лагранжа); m1, m2 — параметры системы; u1, u2 — сигналы управ
ления. 

Перепишем систему (5) в новых координатах, введя новый вектор состояния

	 X =  
x1

x2

x3

  ,	 (6)

где xi =  xi1
xi2

  =  qi
qi

  , i = 1, 3.

Получим многоканальную систему, описываемую тремя системами уравнений:

	

ẋ11 = x12;

ẋ12 = x11x22
2  + 

m1

1 u1;

y1 = CTx1;

 

ẋ21 = x22;

ẋ22 = –2
x11

1
x12x22 + 

m1x11

1
2

u2;

y2 = CTx2;

 

ẋ31 = x32;

ẋ32 = – 
m2

1
u2;

y3 = CTx3,

	 (7)

где CT = [1 0].
Нетрудно заметить, что при построении наблюдателя ключевой переменной является  

x22 = q2, или, другими словами, при определении x22 = q2 могут быть применены стандартные 
техники синтеза наблюдателей. Поэтому рассмотрим отдельно систему уравнений

	

ẋ21 = x22;

ẋ22 = –2
x11

1
x12x22 + 

m1x11

1
2

u2;

y2 = x21.

Введем следующие обозначения:

	 φ(x(t), θ0(t)) = 
x11

x12 = 
x11

x11 = 
dt
d

ln(x11); u = 
x11

1
2 u2,

тогда A0 =  0 1
0 0  , B0 =  01  , B(θ) =  0

1/m1
  и φint = ln(x11) — известная функция.

Легко заметить, что данная система отвечает введенным допущениям 1, 2.
Д о п у щ е н и е  3. Вектор неизвестных переменных параметров формируется генератором 

вида

	
ξ(t) = Γ(t)ξ(t);
θ(t) = H(t)ξ(t),

 �	 (8)

где H(t) и Γ(t) — известные матрицы, начальные условия ξi0 = ξi(0) неизвестны, так что каждый 
неизвестный параметр может быть представлен следующим образом:

	 θi = ψi(t)ξi0,

где ψi(t) — известная функция.
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Д о п у щ е н и е  4. Матрица управления может быть представлена в виде

	 B(θ) = B1θ,	 (9)

где B1 ∈ ℝn×n — известная матрица.
Д о п у щ е н и е  5. Предполагается, что траектории входа и состояния системы ограни-

чены. Данное допущение является типовым для задач в области идентификации и построения 
наблюдателей [11–13].

Основной результат. Для решения задачи синтеза наблюдателя переменных состояния 
объекта (1) прибегнем к процедуре параметризации билинейной динамической системы с 
неизвестными параметрами, позволяющей получить линейную регрессионную модель, содер-
жащую неизвестные постоянные параметры. Первый шаг синтеза наблюдателя переменных 
состояния заключается в идентификации неизвестных параметров статической регрессионной 
модели, полученной из (1). Следующий шаг — на основе идентифицированных параметров 
восстановление переменных состояния. Следует отметить, что задача оценки неизвестных па-
раметров линейной регрессионной модели не нова, существует множество различных методов 
ее решения. Выбор метода зависит от условий возбуждения, накладываемых на регрессор (см., 
например, [9, 14, 15]). Таким образом, проблему идентификации неизвестных параметров (как 
самостоятельную задачу) оставим за рамками данной статьи.

Для вывода основного результата введем функцию

	 Φ = Λx,	 (10)

где Φ ∈ ℝn — вектор-функция, Λ = Λ(t) ∈ ℝn×n — некоторая матричная функция, которая будет 
определена далее.

Из уравнения (10) вектор состояния x может быть получен путем умножения обеих частей 
равенства на Λ–1:

	 x = Λ–1Φ.	 (11)

Рассмотрим производную от Φ:

	 Φ = Λx(t) + Λ(A0x(t) + B0φ(x(t), θ0(t))x(t) + B(θ)u(t)).	 (12)

Пусть матричная функция Λ(t) определяется как решение дифференциального уравнения

	 Λ = –Λ(A0 + B0φ(x(t), θ0(t)). 	 (13)

С учетом допущений 1 и 2 решением уравнения (13) будет функция Λ(y(t), θ0(t), t). Таким 
образом, функцию Λ можно считать известной. 

Кроме того, с учетом (13), вне зависимости от начальных условий Λ(0), уравнение (12) 
примет вид

	 Φ = ΛB(θ)u(t).	 (14)

Принимая во внимание допущения 3 и 4, для (14) имеем

	 Φ = ΛB1θu(t) = ΛB1H(t)Ψ(t)ξ0u(t) = ΛB1H(t)Ψ(t)u(t)ξ0,	 (15)

где Ψ(t) — матрица известных функций, ξ0 — постоянный вектор неизвестных начальных 
условий.

Решением уравнения (15) является функция
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	 Φ = Φ0 + �∫
t

0
ΛB1H(s)Ψ(s)u(s)ds�ξ0,	 (16)

где Φ0 — постоянный вектор неизвестных начальных условий вектора Φ.
Тогда, подставляя (10) в (16), получаем:

	 Λx = Φ0 + �∫
t

0
ΛB1H(s)Ψ(s)u(s)ds�ξ0.	 (17)

Умножив уравнение (17) на Λ–1 и применив линейный фильтр 
(p + λ)n–1

λ
 (где число λ > 0 и 

p = 
dt
d

 — оператор дифференцирования), можно получить линейную регрессионную модель, 

содержащую неизвестные постоянные параметры Φ0 и ξ0.
Для оценки параметров линейной регрессионной модели можно использовать любой удоб-

ный способ в зависимости от ограничений, налагаемых на систему, а после получения оценок 
Φ0 и ξ0 оценку вектора состояния можно найти, воспользовавшись уравнением (11). 

Для иллюстрации предлагаемого метода рассмотрим следующий академический пример.
Пример. Пусть параметры системы (1) имеют следующий вид:

	 A0 =  0 1
0 0  , B0φ(x(t), θ0(t)) =  0	 0

0	 θ1x2
  , B(θ) =  0

θ2
 , CT = [1 0],

θ1 — известный постоянный параметр, θ2 — неизвестный переменный параметр, удовлетво-
ряющий допущению 3, т. е. θ2 = ψ2(t)ξ20, где ψ2(t) — известная функция, ξ20 — неизвестные 
начальные условия.

Тогда система (1) преобразуется к форме

	 ẋ1 = x2;
ẋ2 = θ1x2

2 + θ2u;
y = x1.

 	 (18)

В соответствии с предложенным методом будем использовать функцию Φ вида (10) и ее 
производную Φ вида (12). Так как функция Λ произвольная, то пусть

	 �Λ + Λ(A0 = B0φ(x(t), θ0(t))�x = 0,	 (19)

т. е.

	 Λ = – Λ  0	 0
0	 θ1x2

  .	 (20)

Для выполнения равенства (19) достаточно найти частное решения уравнения (20) в виде

	 Λ =  0 λ1
0 λ2

  ,	 (21)

где элементы матрицы можно рассчитать следующим образом:

	 λ1 = λ2 = e
–∫

t

0
θ1x2ds

 = e–θ1y.

Тогда уравнение (12) может быть записано как

	 Φ = ΛB(θ)u(t) =  0 e–θ1y

0 e–θ1y   ∙  0
θ2

  u(t) =  0 e–θ1y

0 e–θ1y   ∙  0	 0
0	 ψ2

  u(t)  0
ξ20

  ,	 (22)

а решение уравнения (22) — как



JOURNAL OF INSTRUMENT ENGINEERING. 2025. Vol. 68, N 5� ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2025. Т. 68, № 5

 Синтез адаптивного наблюдателя состояния для класса нестационарных билинейных систем... 403

	 Φ = Φ0 + �∫  0 e–θ1y

0 e–θ1y   ∙  0	 0
0	 ψ2

  u(t)dt�  0
ξ20

  = Φ0 + V  0
ξ20

  ,	 (23)

где V ∈ ℝn×n — известная функция.
Теперь, подставив (10) в выражение (23), получим

	 Λx = Φ0 + V  0
ξ20

  	 (24)

или

	  e
–θ1yx2

e–θ1yx2
  =  Φ01

Φ02
  +  V12ξ20

V22ξ20
  .	 (25)

Очевидно, что для определения вектора x необходимо найти неизвестные параметры Φ0 
и ξ20. Для идентификации Φ0 и ξ20 умножим (25) на eθ1y, а затем применим линейный фильтр 

p + λ
λ

. Тогда уравнение (25) можно записать в форме линейной регрессионной модели с неиз-

вестными параметрами Φ01, Φ02 и ξ20:

	 Y = ΨTΘ,

где 

	 Θ =  

Φ01

ξ20

Φ02

ξ20

  , Ψ =  
	
p + λ

λ �e–θ1y�	
p + λ

λ �V11e–θ1y�	 0	 0

	 0	 0	
p + λ

λ �e–θ1y�	
p + λ

λ �V11e–θ1y�

  

T

,

	 Y =  p + λ
λp

[y]

p + λ
λp

[y]

  =  p + λ
λ

[x2]

p + λ
λ

[yx2]

  .

Неизвестные параметры регрессии можно оценить любым удобным способом, например 
с помощью градиентного алгоритма:

	 Θ = γΨ(Y – ΨTΘ),

где Θ — оценка вектора неизвестных постоянных параметров, γ > 0 — коэффициент адаптации.
После определения постоянных параметров запишем оценку переменной состояния x2 и 

оценку неизвестного параметра θ2:

x2 = (Φ02 + V21ξ20)e–θ1y, θ2 = ξ2ψ2.

Результаты компьютерного моделирования пред-
ставлены на рис. 1 и 2 графиками ошибки оценивания 
неизвестной переменной состояния x2 = x2 – x2 и ошиб-
ки оценивания неизвестного параметра θ2 = θ2 – θ2.  
Моделирование проводилось при следующих параме-
трах системы (18): θ1 = 0,5, θ2 = ψ2(t)ξ20, где ψ2(t) = 1, 
ξ20 = –0,1, u = 0,01sin t. Параметры наблюдателя: λ = 1, 
γ = 1000.

0 10 20 30 40

0

4

8

t, c

x2

Рис. 1
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Как видно на представленных графиках, ошибки 
x2 и θ2 сходятся к нулю, что полностью отвечает по-
ставленной в работе задаче. Результаты моделирования 
демонстрируют работоспособность предложенного 
наблюдателя состояния нелинейной нестационарной 
системы (1), содержащей неизвестные параметры. 

Заключение.  Предложен новый метод синтеза 
адаптивного наблюдателя переменных состояния для 
нестационарной билинейной системы вида (1) при 
допущении, что система содержит неизвестные пара-
метры в матрице (векторе) при сигнале управления. 
Для указанной системы сформулированы допущения, 

позволяющие решить задачу синтеза адаптивного наблюдателя (10)–(17). Представлен пример, 
разъясняющий суть предлагаемого подхода и приведены результаты компьютерного моделиро-
вания, демонстрирующие работоспособность подхода. 

Новизна представленного метода заключается в предложенной параметризации, позволя-
ющей получить линейное регрессионное статическое уравнение из нелинейной динамической 
системы.

Дальнейшие исследования должны быть направлены на разработку обобщенных наблю-
дателей состояния билинейных систем, содержащих более сложные нелинейные модели с 
неизвестными параметрами. Расширение текущего результата позволит решать прикладные 
проблемы синтеза наблюдателей переменных состояния для класса реальных технических 
систем, описываемых, в частности, уравнением Эйлера — Лагранжа.
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