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Аннотация. Представлен подход к настройке параметров адаптивного управления на скользящем режиме с су-
перскручиванием, применяемый для нелинейных систем с параметрической неопределенностью. Подход разра-
ботан на основе алгоритма Джая, обеспечивающего эффективность работы и устойчивость системы управления 
в изменяющихся условиях. Учет сложности модельного описания и наличия неопределенности, а также точная 
настройка параметров регулятора на скользящем режиме с суперскручиванием имеют существенное значение 
для обеспечения оптимальной производительности системы. С помощью алгоритма Джая, обеспечивающего 
достижение  оптимального режима функционирования, исследовано влияние различных параметров системы на 
ее поведение и устойчивость. Результаты численного моделирования показывают, что адаптивное управление 
нелинейной системой на скользящем режиме с суперскручиванием, оптимизированное с помощью алгоритма 
Джая, обеспечивает более высокую производительность системы и устойчивость к помехам, по сравнению с 
традицион ными подходами. Эффективность предложенного подхода подтверждается на примере модели пере-
вернутого маятника на тележке.
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Abstract. An approach to adjusting the parameters of adaptive control in a sliding mode with super-twisting, used for 
nonlinear systems with parametric uncertainty, is presented. The approach is based on Jaya algorithm, which ensures 
the efficiency and stability of the control system in changing conditions. Taking into account the complexity of the model 
description and the presence of uncertainty, as well as fine-tuning the parameters of the regulator in sliding mode with 
supercooling are essential to ensure optimal system performance. The influence of various system parameters on 
its behavior and stability is studied using the Jaya algorithm, which ensures the achievement of an optimal mode of 
operation. The results of numerical simulation show that adaptive control of a nonlinear system in a sliding mode with 
super-twisting, optimized using the Jaya algorithm, provides higher system performance and resistance to interference, 
compared with traditional approaches. The effectiveness of the proposed approach is confirmed by the example of an 
inverted pendulum model on a trolley.
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Введение. Управление нелинейными системами с неопределенностью представляет собой 
сложную задачу. Традиционные методы управления зачастую не позволяют обеспечить надеж-
ность и производительность системы в изменяющихся условиях. В последнее время появились 
методы адаптивного управления, которые позволяют достичь желаемых показателей качества за 
счет динамической настройки параметров регулятора в соответствии с вариациями параметров 
системы. К таким методам относится управление на скользящем режиме с суперскручиванием 
(УСРСС), которое делает возможной робастность системы в условиях внешних возмущений и 
параметрических неопределенностей, обеспечивая сходимость траекторий движения к сколь-
зящей поверхности за конечное время [1–5].

Несмотря на очевидные преимущества УСРСС, производительность системы сильно 
зависит от выбора параметров регулятора, которые трудно рассчитать заранее. Как правило, 
эти параметры должны быть точно настроены для достижения желаемых целей управления, 
обеспечивая свойство робастности системы. Традиционные методы настройки регулятора, 
включая метод проб и ошибок и поиск по сетке значений параметров, часто оказываются не-
эффективными, особенно для сложных систем, когда число переменных состояния велико и 
сильно нелинейно. В этом контексте алгоритм Джая эффективен при оптимизации параметров 
регулятора [6–10]. Для алгоритма Джая требуется минимальное количество параметров. Он 
прост в реализации и показал высокую эффективность при решении различных инженерных 
задач. Алгоритм основан на концепции поиска лучших решений, избегая при этом худших, 
что делает его особенно подходящим для оптимизации параметров систем управления, когда 
производительность и надежность имеют первостепенное значение.

В настоящей статье представлен подход к настройке параметров адаптивного управления 
на скользящих режимах с суперскручиванием, использующий алгоритм Джая, который разра-
ботан для нелинейных систем с неопределенностью. Интеграция алгоритма Джая с УСРСС не 
только повышает эффективность управления, но и обеспечивает адаптивность к изменяющимся 
характеристикам системы и внешним воздействиям.

Эффективность предложенного подхода в оптимизации параметров управления и улучше-
нии показателей качества системы продемонстрирована на примере.

Постановка задачи синтеза адаптивного управления на скользящем режиме с супер-
скручиванием. Рассмотрим нелинейную систему вида
	 ẋ(t) = f(x, t) + Δf(x, t) + (g(x, t) + Δg(x, t))u(t) + d(x, t),	 (1)

где x ∈ Rn — вектор состояния, u ∈ Rm — сигнал управления, f(x, t) = [f1(x, t) ⋯ fn(x, t)]T ∈ Rn 
и g(x, t) = [0 ⋯ 0 gn(x, t)]T ∈ Rn — гладкие функции, такие что gn(x, t) ≠ 0∀x, Δf(x, t) ∈ Rn и  
Δg(x, t) ∈ Rn — неопределенности, d(x, t) — неизвестное возмущение [1–3]. 

Ставится задача синтезировать адаптивный алгоритм управления на скользящем режиме 
с суперскручиванием, обеспечивающий сходимость траекторий движения за конечное время в 
условиях внешних возмущений и параметрических неопределенностей, а также оптимальную 
производительность системы. Производительность системы напрямую связана с выбором пара-
метров регулятора. В настоящей статье задача настройки параметров регулятора решается путем 
применения алгоритма оптимизации Джая, который позволяет найти оптимальные параметры 
регулятора, обеспечивающие наиболее эффективное управление системой.

Процедура синтеза адаптивного управления на скользящем режиме с суперскручиванием 
включает в себя три основных этапа:

— выбор скользящей поверхности;
— разработка адаптивного алгоритма управления с суперскручиванием;
— настройка адаптивных параметров регулятора.
Согласно представленной процедуре рассмотрим скользящую поверхность s(x, t):

	 s(x, t) = k1x1 + ⋯ kn–1xn–1 + xn,	 (2)

где ki — коэффициенты; i = 1, …, n — положительные константы.
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Дифференцирование выражения (2) с последующей подстановкой выражения (1) позволяет 
получить следующие соотношения: 

ṡ(x, t) = k1ẋ1 + ⋯ + kn–1ẋn–1 + ẋn = k1f1(x, t) + ⋯ + kn–1fn–1(x, t) + fn(x, t) + gn(x, t)u(t) + d(x, t).	 (3)

Адаптивное управление на скользящих режимах с суперскручиванием может быть синте-
зировано в виде [3]:

	 u = 
gn(x, t)

1
(ueq + ust),	 (4)

где эквивалентный закон управления ueq имеет вид

	 ueq = –k1f1(x, t) – ⋯ –kn–1fn–1(x, t) – fn(x, t),	 (5)

а адаптивное управление с суперскручиванием задается в форме

	 ust = u1 + u2,	 (6)

так что 

	 u1 = –α|s|2
1

sgn(s),

	 u2 = � 
	 –ust	 при |ust| > umax,
	–βsgn(s)	 при |ust| ≤ umax. 	 (7)

В выражении (7) компонент umax представляет собой верхнюю границу ust. Адаптивные 
коэффициенты α и β вычисляются следующим образом:

	 α2 = 	w1
2
γ

sgn(|s| – w2)	 при |α| > umax,

	 0	 при |α| ≤ umax,

	 (8)

	 β = 2εα,

где w1, w2, γ и ε — положительные константы, αmax — верхняя граница параметра α.
Анализ устойчивости. Подставив (4) и (5) в выражение (3), получим производную функции 

скользящей поверхности в следующем виде:

	 ṡ = ust + d(x, t).	 (9)

Неизвестное возмущение дифференцуемо и ограничено так, что

	 |d(x, t)| ≤ δ,	 (10)

где δ — положительная константа.
Выберем функцию Ляпунова в следующем виде: 

	 V = 
2
1

sTs.	 (11)

Продифференцируем выражение (11) с последующей подстановкой (9):

	 V = sTṡ = sT(ust + d(y1, y2, y3, y4)) =

	 = sT(–α |s|sgn(s) – ∫βsgn(s)dt + d(y1, y2, y3, y4) = 
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	 = –sTα |s|sgn(s) – sT∫βsgn(s)dt + sTd(y1, y2, y3, y4) = 

	 = –α|sT| |s| – |sT|∫βdt + |sTd(y1, y2, y3, y4)| = –α|sT| |s| – |sT|∫βdt + |sT|∫d(y1, y2, y3, y4)dt =

	 = –α|sT| |s| – |sT|∫βdt + |sT|∫δdt = –α|sT| |s| – |sT|∫(β – δ)dt ≤ –α|sT| |s|.

Очевидно, производная функции Ляпунова V является отрицательной и полуопределенной. 
Следовательно, траектории движения переменных состояния системы сходятся к нулю. 

Однако следует заметить, что точно определить коэффициенты, которые гарантируют 
ограничение закона управления (umin ≤ u(t) ≤ umax) и минимальную погрешность настройки 
параметров регулятора, затруднительно. Для преодоления этой проблемы авторы предлагают 
подход, основанный на алгоритме Джая, который одновременно обеспечивает ограничение 
закона управления и устойчивость системы. 

Настройка параметров адаптивного управления на скользящих режимах с супер-
скручиванием на основе алгоритма Джая. Для настройки параметров регулятора предла-
гается использовать алгоритм оптимизации Джая [6–10]. Согласно алгоритму Джая, поиск 
оптимального решения осуществляется при исключении наихудшего варианта решения задачи. 
Выполнение алгоритма начинается с задания произвольной исходной совокупности параметров 
в заданном пространстве выборок или набора точек. Для каждого элемента заданного набора 
точек  вычисляется целевая функция φ(x), которую необходимо минимизировать (или макси-
мизировать).

Допустим, есть ρ потенциальных решений и n переменных регулятора, которые нужно 
настроить. Функция с наилучшим значением φ(x) является лучшим (φ(x)best), а с наихудшим — 
наихудшим решением (φ(x)worst) задачи оптимизации. 

Если Xj,k,i представляет собой j-е значение переменной для k-й функции на i-й итерации, 
это значение корректируется следующим образом:

	 Xʹj,k,i = Xj,k,i + r1,j,i[Xj,best,i – |Xj,k,i|] – r2,j,i [Xj,worst,i – |Xj,k,i|], 	 (12)

 где Xj,best,i — значение j-й переменной для лучшего варианта решения; Xj,worst,i — значение 
j-й переменной для наихудшего варианта решения; Xʹj,k,i — обновленное значение Xj,k,i; r1,j,i и 
r2,j,i — два случайных числа j-й переменной и i-й итерации в диапазоне [0, 1]. Программный код, 
позволяющий реализовать алгоритм Джая в программном пакете MatLab, приведен на рис. 1. 

Пошаговая блок-схема алгоритма приведена на рис. 2.
В качестве  интегрального показателя производительности системы будем рассматривать 

абсолютную интегральную ошибку [11–14], в соответствии с которой целевую функцию зада-
дим в виде 

	 JIAE = ∫
T

0
|e(t)|dt,	 (13)

где T — время моделирования. 
Таким образом, процедура настройки параметров адаптивного регулятора на скользящих 

режимах с суперскручиванием может быть сведена к следующей последовательности шагов.
1. Задание необходимого набора параметров для реализации оптимальных алгоритмов: 

число итераций (D), число популяций (N), число параметров регулятора (vars). Определение 
диапазона изменений параметров регулятора [kmin, kmax] и ограничения на управляющий сигнал 
[umin, umax]. 

2. Формирование циклов на основе числа итераций и диапазона параметров регуля
тора [kmin, kmax]. Обновление каждого решения в случае нахождения наилучшего решения (ki) 
в соответствии с правилами используемого алгоритма оптимизации (например, алгоритма 
Джая). 
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Рис. 1

Рис. 2 
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3. Вычисление целевой функции JIAE(t) и управляющего сигнала u(t) для каждого решения. 
4. Проверка закона управления u(t): 
если управляющий сигнал u(t) не удовлетворяет заданным ограничениям [umin, umax] — 

возврат к шагу 3;
если управляющий сигнал u(t) удовлетворяет заданным ограничениям [umin, umax] — пе-

реход к шагу 5.
5. Проверка целевой функции JIAE(t): 
если значение целевой функции JIAE(t) лучшее, следует обновить решение;
если значение целевой функции JIAE(t) хуже предыдущего, следует зафиксировать преды-

дущее решение.
6. Проверка критерия остановки работы алгоритма:
если критерий выполняется — зафиксировать наилучшее решение (ki); 
если критерий не выполняется — возврат к шагу 2.
Интервал допустимых значений параметров, в пределах которого осуществляется поиск 

оптимальных значений, определяется исходя из требований к устойчивости системы и желае-
мому времени переходного процесса в силу следующих соотношений:

	
τiq

1
*

 ≤ ki ≤ 
τip

1
 и ki ≤ 

τiq

8
*

,	

где τip, i = 1, n — время пика (максимума), соответствующее максимальному значению регули-
руемой переменной; τiq*, i = 1, n — желаемое время переходного процесса.

Пример. Рассмотрим модель перевернутого маятника на тележке (рис. 3) в качестве не-
линейной системы с неопределенностью значений длины маятника, массы тележки и массы 
маятника. Кроме того, на систему „маятник–тележка“ могут влиять неизвестные внешние воз-
мущения и неизвестные трения. Следовательно, классические алгоритмы [15–17] неприменимы 
для решения данной задачи.

mP

y
l.sinθ

l.cosθ θ mPg

l

mPx#

O
x

MCx#

MCg

u(t)

Рис. 3

Математическая модель системы „маятник–тележка“ [18–20] имеет вид 

	 (mP + MC)x# + mPl(θ#cosθ – θ2sinθ) = u,
	 x#cosθ + lθ# + gsinθ = 0,	

(14)

где x — координата положения тележки; θ — угол отклонения маятника; mP = m + Δm —  сумма 
массы маятника (m) и ее неопределенности (Δm); MC = M + ΔM — сумма массы тележки (M) 
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и ее неопределенности (ΔM); l — длина маятника; u — синтезируемый закон управления; g — 
ускорение свободного падения.

Система (14) может быть представлена в следующем виде:

	 x# = 
MC + mPsin2θ

mPlθ2sinθ + mPgcosθsinθ
 + 

MC + mPsin2θ
1

 u,

	 θ# = – 
l(MC + mPsin2θ)

(mP + MC)gsinθ + mPlθ2cosθsinθ
 – 

l(MC + mPsin2θ)
cosθ

 u.	
(15)

Относительно угла отклонения маятника введем допущение sinθ ≈ θ, cosθ ≈ 1 и sin2θ ≈ 0, 
тогда модель „вход–состояние–выход“ перевернутого маятника на тележке примет вид

	 ẋ1 = x2,

	 ẋ2 = – 
l(MC + mPsin2θ)

(mP + MC)gx1 + mPlx1x2
2

 – 
MCl

1
 u,

	 ẋ3 = x4,	 (16)

	 ẋ4 = 
MC

mPlx1x2 + mPgx1
2

 + 
MC

1
u,

где x1 = θ, x2 = θ, x3 = x, x4 = ẋ — переменные состояния.
Введем новые переменные состояния

	 y1 = x1 + 
l
x3; y2 = x2 + 

l
x4; y3 = x3; y4 = x4.	 (17)

Модельное описание системы в новой системе координат будет иметь представление

	 ẏ1 = y2,

	 ẏ2 = – 
l
g

y1 + 
l 2
g

y3,

	 ẏ3 = y4,	 (18)

	 ẏ4 = 
MC

mPgy1 – 
MCl
mPgy3 + 

MC

1
u + d,

где d — неизвестное возмущение, заданное в следующем виде: 

	 d(y1, y2, y3, y4) = 
MC

mPl�y1 – 
l
y3��y2 – 

l
y4�

2

.	 (19)

Разработанный для перевернутого маятника на тележке регулятор должен [20]: 
1) обеспечить перемещение маятника из исходного положения в вертикальное положение; 
2) стабилизировать маятник в вертикальном положении; 
3) обеспечить ограниченность закона управления при минимальном значении целевой 

функции. 
Предполагается, что регулируемая переменная достигает максимального значения при 

tp = 0,1 с. Желаемое время переходных процессов в системе τq* = 0,8 с. Решение поставлен-
ных задач обеспечит адаптивный регулятор на скользящих режимах с суперскручиванием, 
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использующий алгоритм оптимизации Джая для определения оптимальных параметров закона 
управления.

Синтез закона адаптивного управления на скользящих режимах с суперскручиванием. 
В зависимости от вектора динамической ошибки функцию скользящей поверхности будем 
конструировать в следующем виде:

	 s = k1e1 + k2e2 + k3e3 + e4,	 (20)

где k1, k2, k3 — положительные константы; ei = yi* – yi, i = 1, 4 — динамическая ошибка откло-

нения регулируемой величины yi от желаемой yi*, y1* = x1* + 
l

x3*, y2* = x2* + 
l

x4*, y3* = x3*, y4* = x4*, 

x1* = θ* — желаемый угол отклонения маятника, x3* = x* — желаемое положение тележки.
Таким образом, 

	 ṡ = k1ė1 + k2ė2 + k3ė3 + ė4,	 (21)

Подстановка выражения (18) в (21) в отсутствие внешних возмущений d(y1, y2, y3, y4) и 
неопределенностей Δm и ΔM позволяет перейти к записи вида

	 ṡ = k1ẏ1* + k2ẏ2* + k3ẏ3* + ẏ4* –

	 –k1y2 – k2�–
l
g

y1 + 
l 2
g

y3� – k3y4 – �
MC

mPgy1 – 
MCl
mPgy3 + 

MC

1
u�.	 (22)

Адаптивное управление на скользящих режимах с суперскручиванием представляется как

	 u = –M(ueq + ust),	 (23)

где эквивалентный закон управления ueq задается в форме

	 ueq = �
MC

mPg  – 
l

k2g�y1 + k1y2 + �
l 2

gk2 – 
MCl
mPg�y3 + k3y4 – (k1ẏ1* + k2ẏ2* + k3ẏ3* + ẏ4*).	 (24)

Подстановка (6)–(8), (24) в выражение (23) позволяет записать адаптивный закон управ-
ления на скользящих режимах с суперскручиванием для перевернутого маятника на тележке 
в форме 

	 u = M ��
MC

mPg  – 
l

k2g�y1 + k1y2 + �
l 2

gk2 – 
MCl
mPg�y3 + k3y4 –

	 – (k1ẏ1* + k2ẏ2* + k3ẏ3* + ẏ4* – –α|s|2
1

sgn(s) – ∫βsgn(s)dt)�.	
(25)

В соответствии с алгоритмом, представленным на рис. 1, зададим число итераций d = 100, 
число популяций n = 100, число настраиваемых параметров регулятора вида (25) vars = 3. 
Исходя из требований к устойчивости системы и времени переходного процесса определим 
допустимый диапазон параметров регулятора, подлежащих настройке, ki ∈ [1,25; 10].

Оптимальные значения параметров адаптивного УСРСС могут быть вычислены с помо-
щью алгоритма Джая в соответствии с процедурой, представленной на рис. 4.

При моделировании параметры системы „маятник–тележка“ выбраны следующим обра-
зом: М = 1 кг, m = 0,1 кг, l = 0,1 м, g = 9,81 м/с2; Δm = 0,1m, ΔM = 0,1М. Желаемый угол наклона 
маятника θ* = 0. Ограничения на управляющий сигнал: –30 ≤ u(t) ≤ 60. 
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В результате обработки данных с помощью алгоритма Джая получены следую-
щие параметры k1 = 1,5, k2 = 3,2 и k3 = 8,4. На рис. 5 показан минимум целевой функции  

JIAE = ∫
T

0
|e(t)|dt = 0,076. Кроме того, маятник стабилизирован в вертикальном положении (рис. 6), 

положение тележки стабилизировано (рис. 7). На рис. 8 представлен адаптивный закон управле-
ния на скользящем режиме с суперскручиванием, удовлетворяющий заданным ограничениям.

Заключение. В статье продемонстрирован подход к настройке параметров адаптивного ре-
гулятора на скользящих режимах с суперскручиванием для класса нелинейных систем с неопре-
деленностью, использующий алгоритм оптимизации Джая. Предлагаемый подход позволяет не 
только повысить надежность и производительность системы управления, но и эффективно пре-
одолевать проблемы, связанные с неопределенностями и нелинейностями системы. Благодаря 
адаптивной оптимизации параметров УСРСС обеспечивает лучшее слежение за траекторией и 
снижение эффекта дребезга, что делает его пригодным для применения в реальных условиях, 
когда преобладают возмущения и помехи.
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