ПРИБОРЫ ТОЧНОЙ МЕХАНИКИ

УДК 621.822.7, 681.2.088

Е. М. АНОДИНА-АНДРИЕВСКАЯ, М. Я. МАРУСИНА

ИСПОЛЬЗОВАНИЕ ВЕЙВЛЕТНОГО ПРЕОБРАЗОВАНИЯ СИГНАЛОВ ПРИ ВЫЯВЛЕНИИ ДИАГНОСТИЧЕСКИХ ПРИЗНАКОВ ЭЛЕМЕНТОВ ПРИБОРОВ И МЕХАНИЗМОВ

Проведен сравнительный анализ методов вейвлетного преобразования при решении задач вибродиагностики. Описан метод шумоподавления, включающий выбор типа пороговой обработки и оценку качества очистки сигнала.

Ключевые слова: технический контроль, вибродиагностика, вейвлетный анализ.

Для технического контроля приборов и механизмов широко применяются методы вибродиагностики, в которых в качестве диагностических признаков объекта используютсяе параметры осевой, радиальной и угловой вибрации [1]. Важной задачей диагностики является очистка гармонического синусоидального сигнала от шума, для этой цели используется одна из самых перспективных технологий анализа данных — вейвлет-анализ. Вейвлет-преобразование дает наиболее наглядную и информативную картину обработки сигналов, позволяя очистить исходные данные от шумов и случайных искажений [2—6].

В настоящей работе рассмотрена модель сигнала $s(n) = f(n) + \sigma e(n)$, где f(n) — полезный сигнал, σ — уровень шума и e(n) — гауссов белый шум, т.е. стационарная случайная некоррелированная последовательность величин с нулевым математическим ожиданием и дисперсией, равной единице. Цель обработки сигнала состоит в том, чтобы подавить его шумовую часть и выделить гармонический сигнал f(n).

При вейвлет-анализе сигнал раскладывается на аппроксимирующие коэффициенты, которые представляют собой сглаженный сигнал, и детализирующие коэффициенты, описывающие колебания. Следовательно, информация о шумовом компоненте сигнала содержится в детализирующих коэффициентах. Поэтому их обрабатывают при удалении шума. Шумовой компонент представляет собой сигнал, значение которого меньше по модулю, чем основного. Простейший способ удаления шума состоит в том, чтобы сделать нулевыми значения коэффициентов, меньшие некоторого порогового значения. Эта процедура называется пороговой обработкой коэффициентов.

При жесткой пороговой обработке сигнала сохраняются неизменными все коэффициенты, большие по абсолютной величине порога τ или равные ему, а меньшие коэффициенты обращаются в нуль. При мягкой пороговой обработке наряду с обращением в нуль коэффициентов, по модулю меньших τ , происходит уменьшение по модулю остальных коэффициентов на величину τ .

При решении задачи шумоподавления необходимо оценить спектральный состав шумового компонента, выбрать тип пороговой обработки (трешолдинга) и критерий расчета самого порога.

От выбора значения порогового уровня фона (оценки дисперсии шума) зависит качество шумоподавления сигнала, оцениваемое в виде отношения сигнал/шум. При задании малых значений порога фон сохраняется в виде коэффициентов детализации и поэтому приводит лишь к незначительному увеличению отношения сигнал/шум. При больших значениях порога не учитываются коэффициенты, которые несут существенную информацию. Оптимальное значение τ_0 порога при наименьшем смещении восстановления сигнала обеспечивает наибольшее значение отношения сигнал/шум.

Процедура шумоподавления включает в себя следующие этапы:

- декомпозиция (выбор вейвлет-преобразования и уровня разложения N, вычисление вейвлет-разложения исходного сигнала до уровня N),
- пороговая обработка детализирующих коэффициентов (выбор порога для каждого уровня от 1 до N и применение мягкой обработки детализирующих коэффициентов),
- вейвлет-реконструкция, основанная на первоначальных аппроксимирующих коэффициентах уровней от I до N.

Для вейвлетной очистки от шума сигнала применялся пакет Matlab Wavelet Toolbox, позволяющий синтезировать все возможные алгоритмы обработки информации с использованием вейвлет-функций [7].

Для решения задачи шумоподавления разработан алгоритм, включающий в себя следующие этапы:

- моделирование вибрации объекта с использованием методики, представленной в [8—11],
- искажение сигналов белым гауссовым шумом с заданным значением отношения сигнал/шум,
 - очистка сигналов от шума с помощью различных методов вейвлет-преобразования,
 - выделение шумов на фоне очищенных сигналов,
 - расчет значений отношения сигнал/шум,
- расчет коэффициентов корреляции между зашумленными и очищенными сигналами с целью выбора лучшего метода,
 - вывод результатов.

Для сравнения выбраны наиболее используемые семейства вейвлетов: Добеши, Хаара, симлеты, вейвлеты Мейера, биортогональные, обратные биортогональные вейвлеты. При очистке сигнала каждым способом использованы одинаковые параметры: порог — мягкий, эвристический вариант первого выбора; перемасштабирование порога с использованием оценки уровня шума на базе коэффициентов первого уровня; уровень вейвлет-разложения — пятый.

Главным критерием при оценке качества очистки сигналов является значение отношения сигнал/шум. Также используются коэффициенты ковариации и корреляции между очищенным и исходным сигналом. Результаты расчетов представлены в таблице.

, and the second			
Вейвлет-преобразование	Отношение	Коэффициент	Коэффициент
	сигнал/шум	ковариации	корреляции
Добеши (db5)	19,70	1,19	0,99
Xaapa (haar)	11,99	1,04	0,97
Симлеты (sym5)	15,28	1,14	0,98
Мейера (dmey)	17,02	1,17	0,98
Биортогональные (bior5.5)	13,17	1,16	0,97
Обратные биортогональные (rbio5.5)	16,36	1,15	0,98

Результаты анализа вейвлетной очистки сигнала

В качестве примера на рисунке представлены результаты обработки модели сигнала вибрации: a — модель сигнала вибрации, δ — модель шума, ϵ — обрабатываемый зашумленный сигнал, ϵ — очищенный от шума сигнал, δ — исходный и очищенный сигналы.

На основе анализа полученных данных можно сделать вывод, что максимальная степень очистки сигнала была получена с использованием фрактального вейвлета Добеши. Если полученный сигнал все еще недостаточно очищен от помех, можно повторно применить к нему вейвлет-преобразование и получить более сглаженный вид, и определить локальные особенности сигнала уже на следующем уровне детализации.

Таким образом, использование вейвлетного преобразования для обработки сигналов вибрации позволяет усовершенствовать процесс выявления гармонических составляющих сигнала, используемых в качестве диагностических признаков объекта в процессе технического контроля приборов и механизмов.

Исследования осуществлены при проведении НИР в рамках реализации ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009—2013 годы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Справочник конструктора точного приборостроения / Под ред. К. Н. Явленского, Б. П. Тимофеева, Е. Е. Чаадаевой. Л.: Машиностроение, 1989. 792 с.
- 2. Блаттер К. Вейвлет-анализ. Основы теории. М.: Техносфера, 2006. 280 с.
- 3. Мусалимов В. М., Валетов В. А. Динамика фрикционного взаимодействия. СПб: СПбГУ ИТМО, 2006. 186 с.
- 4. *Мусалимов В. М., Дик О. Е., Тюрин А. Е.* Параметры действия энергетического спектра вейвлетпреобразований // Изв. вузов. Приборостроение. 2009. Т. 52, № 5. С. 10—15.
- 5. Марусина М. Я. Инвариантный анализ и синтез в моделях с симметриями. СПб: СПбГУ ИТМО, 2004. 144 с.
- 6. *Марусина М. Я., Казначеева А. О.* Шумоподавление в томографии с помощью вейвлет-фильтров // Изв. вузов. Приборостроение. 2006. Т. 49, № 10. С. 51—57.
- 7. Смоленцев Н. К. Основы теории вейвлетов. Вейвлеты в Matlab. М.: ДМК Пресс, 2005. 301 с.

- 8. *Анодина-Андриевская Е. М.* Разработка комплексных автоматизированных систем диагностического контроля шарикоподшипников. СПб: СПГУАП, 2000. 8 с.
- 9. Явленский К. Н., Анодина-Андриевская Е. М. Автоматизированная система диагностирования шариковых подшипников // Тез. докл. Междунар. науч.-техн. конф. "Диагностика, информатика, метрология, экологическая безопасность 98". СПб, 1998. С. 34.
- 10. *Анодина-Андриевская Е. М.* Структура и программная реализация обобщенной модели диагностирования шарикоподшипников // Изв. вузов. Приборостроение. 2001. Т. 44, № 5.
- 11. *Анодина-Андриевская Е. М.* Обобщенная диагностическая модель шариковых подшипников // Тез. докл. Междунар. науч.-техн. конф. "Диагностика, информатика, метрология, экологическая безопасность 98". СПб, 1998. С. 35.

Сведения об авторах

Елена Михайловна Анодина-Андриевская

 канд. техн. наук, доцент; Санкт-Петербургский государственный университет информационных технологий, механики и оптики, кафедра измерительных технологий и компьютерной томографии

Мария Яковлевна Марусина

— д-р техн. наук, профессор; Санкт-Петербургский государственный университет информационных технологий, механики и оптики, кафедра измерительных технологий и компьютерной томографии; E-mail: marusina m@mail.ru

Рекомендована кафедрой измерительных технологий и компьютерной томографии

Поступила в редакцию 30.06.10 г.