СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

УДК 681.5.03

А. А. БОБЦОВ, А. В. КРЫЛОВ, А. А. ПЫРКИН

ПОВЫШЕНИЕ ТОЧНОСТИ ОЦЕНКИ ЧАСТОТЫ СИНУСОИДАЛЬНОГО СИГНАЛА С ИСПОЛЬЗОВАНИЕМ НЕЛИНЕЙНОГО ФИЛЬТРА

Рассматривается новая схема идентификации частоты измеряемого синусоидального сигнала с использованием нелинейного фильтра. В отличие от большинства известных аналогов, предлагаемый алгоритм позволяет получить более точные оценки за меньшее время.

Ключевые слова: идентификация, гармонический сигнал, фильтрация.

Введение. Актуальность проблемы идентификации частоты измеряемого синусоидального сигнала в условиях влияния внешних возмущений и шумов подтверждается наличием большого числа публикаций, посвященных идентификации частоты синусоидального или частот мультигармонического сигналов [1-17]. Однако в большинстве указанных работ не обсуждается задача качества идентификации, а именно ускорения вычислительной процедуры и повышения точности оценок при неучтенных возмущениях, присутствующих в канале измерения полезного сигнала. Анализ и рекомендации по увеличению скорости сходимости оценки частоты синусоидального сигнала к истинному значению были опубликованы в работах [11, 14—16], а их робастность к неучтенным возмущениям и помехам исследована в работах [13—16]. В частности, в работе [15] была предложена новая схема идентификации частоты измеряемого синусоидального сигнала в условиях неучтенных возмущающих воздействий и шумов, присутствующих в канале измерения полезного сигнала. Одно из отличий схемы, предложенной в работе [15], от известных аналогов заключается в возможности компенсации неучтенных возмущений путем подбора коэффициентов алгоритма идентификации. Однако такой подход характеризуется потерей скорости параметрической сходимости при устранении влияния возмущений и шумов. По мнению авторов настоящей статьи, назрела необходимость совершенствования имеющихся методов с учетом сохранения одновременно двух показателей качества, т.е. скорости параметрической сходимости и точности оценок.

В данной статье на основе ранних работ Первозванского [18] предлагается новый подход к идентификации частоты синусоидального сигнала с использованием нелинейного фильтра, что позволит решить задачу сохранения качества.

Постановка задачи. Рассмотрим, как и в работе [15], измеряемый сигнал

$$\overline{y}(t) = y(t) + \delta(t); \tag{1}$$

$$y(t) = \sigma \sin(\omega t + \varphi), \qquad (2)$$

где амплитуда σ , частота ω и фаза φ — неизвестные постоянные величины, а ограниченный гладкий сигнал $\delta(t)$ характеризует неучтенное возмущающее воздействие или шум в канале измерения полезного сигнала y(t).

Ставится задача синтеза схемы идентификации частоты ω , обеспечивающей сходимость оценки частоты $\hat{\omega}$ к ее истинному значению ω с минимальной ошибкой. Иными словами, необходимо обеспечить следующее целевое условие:

$$\lim_{t \to \infty} |\omega - \widehat{\omega}(t)| \le \overline{\delta} \quad \text{при } \delta(t) \neq 0,$$
(3)

где число $\overline{\delta} = \overline{\delta}(\delta(t))$.

Схема идентификации частоты синусоидального сигнала с использованием нелинейного фильтра. Для синтеза схемы идентификации частоты ω сначала рассмотрим сигнал (1) при отсутствии возмущения $\delta(t)$, т.е.

$$\overline{y} = y = \sigma \sin(\omega t + \phi). \tag{4}$$

Кратко повторим основные положения работы [15]. Известно [13], что для моделирования сигнала (4) можно использовать следующие дифференциальные уравнения:

$$\dot{x}_1 = x_2; \tag{5}$$

$$\dot{x}_2 = -\omega^2 x_1; \tag{6}$$

$$v = k_1 x_1 + k_2 x_2 = k_1 x_1 + k_2 \dot{x}_1, \tag{7}$$

где k_1 и k_2 — строго положительные постоянные коэффициенты.

Пусть искомый параметр $\theta = -\omega^2$, тогда идеальный алгоритм идентификации параметра θ может быть представлен следующим образом:

$$\hat{\theta} = k x_1^2 (\theta - \hat{\theta}), \qquad (8)$$

где $\hat{\theta}$ — текущая оценка параметра θ .

Алгоритм вида (8) основан на классическом методе настройки неизвестных параметров и при выполнении условий предельной интегральной невырожденности гарантирует асимптотическую сходимость $\hat{\theta}$ к θ (см., например, [7, 13]). Однако схема идентификации (8) технически нереализуема, так как содержит неизмеряемый сигнал x_1 и неизвестный параметр θ . Для того чтобы получить реализуемый алгоритм, проведем следующие преобразования. Из уравнения (7) имеем

$$\dot{x}_1 = k_2^{-1}(-k_1x_1 + y) = -ax_1 + by, \qquad (9)$$

где $a = k_1 / k_2$, $b = k_2^{-1}$.

Тогда, пренебрегая экспоненциально затухающими членами, вызванными ненулевыми начальными условиями $x_1(0)$, для восстановления переменной x_1 будем использовать уравнение (9) при $x_1(0) = 0$. Для того чтобы компенсировать неопределенность $x_1^2 \theta$ в выражении (8), воспользуемся уравнением (6), при этом алгоритм (8) принимает вид

$$\theta = -kx_1^2 \hat{\theta} + kx_1 \dot{x}_2. \tag{10}$$

Из выражений (5) и (9) получаем уравнение

$$\dot{x}_2 = -a\dot{x}_1 + b\dot{y}, \qquad (11)$$

подставляя которое в (10), имеем

$$\hat{\theta} = -kx_1^2 \hat{\theta} + kx_1 (-a\dot{x}_1 + b\dot{y}), \qquad (12)$$

где функции x_1 и \dot{x}_1 определяются из уравнения (9).

Очевидно, что алгоритм (12) по-прежнему нереализуем, так как содержит неизвестную функцию *у*. Для компенсации этой неизвестной составляющей введем в рассмотрение новую переменную

$$\varsigma = \widehat{\Theta} - kbx_1 y \,. \tag{13}$$

Дифференцируя (13), получаем реализуемый алгоритм идентификации параметра θ :

$$\dot{\varsigma} = \hat{\theta} - kb\dot{x}_1 y - kbx_1 \dot{y} = -kx_1^2 \hat{\theta} - kax_1 \dot{x}_1 - kb\dot{x}_1 y, \qquad (14)$$

$$\hat{\theta} = \varsigma + kbx_1y, \ \hat{\omega} = \sqrt{|\hat{\theta}|}.$$
 (15)

Итак, уравнения (9), (14) и (15) представляют собой схему идентификации частоты синусоидального сигнала вида (4), где в случае ненулевого неучтенного возмущения $\delta(t)$ в канале измерения полезного сигнала вместо y(t) используется $\overline{y}(t) = y(t) + \delta(t)$. Заметим, что предложенная схема идентификации является робастной относительно неучтенных возмущений.

При наличии внешнего возмущения $\delta(t)$ в канале измерений алгоритм оценивания частоты позволяет обеспечить выполнение целевого условия (3), где величина $\overline{\delta}$ зависит от $\delta(t)$. Следует отметить, что уравнение (9) представляет собой низкочастотный фильтр первого порядка: это, в свою очередь, позволяет подавлять возмущение $\delta(t)$ за счет выбора коэффициентов *a* и *b*. С другой стороны, для повышения точности оценивания частоты ω необходимо уменьшать параметры *a* и *b*, что влечет за собой увеличение времени оценивания частоты.

В целях повышения точности и быстродействия оценивания рассмотрим нелинейный фильтр, структурная схема которого представлена на рис. 1.

Выходная переменная фильтра $\hat{\omega}_f$ определяется соотношением

$$\widehat{\omega}_f = \int_0^t \vartheta(\tau) d\tau, \qquad (16)$$

где сигнал $\vartheta(\tau)$ является выходом нелинейного звена "насыщение":

$$\dot{\widehat{\omega}}_{f} = \begin{cases} \frac{c}{d} \left(\widehat{\omega} - \widehat{\omega}_{f} \right), \left| \widehat{\omega} - \widehat{\omega}_{f} \right| \le d; \\ c \operatorname{sgn} \left(\widehat{\omega} - \widehat{\omega}_{f} \right), \left| \widehat{\omega} - \widehat{\omega}_{f} \right| > d, \end{cases}$$
(17)

где *с* и *d* — настроечные параметры.

На вход фильтра поступает сигнал оценки частоты $\hat{\omega}$, рассчитанной по закону (15). Суть фильтра заключается в том, чтобы удалить из сигнала $\hat{\omega}$ высокочастотную составляющую, связанную с возмущением $\delta(t)$. В работе [18] показано, что пропускная способность нелинейного звена "насыщение" понижается с ростом дисперсии входного сигнала: действительно, чем больше амплитуда на входе, тем меньше коэффициент передачи звена.

Puc. 1

Как видно из рис. 1, нелинейное звено (17) в фильтре ограничивает скорость роста переменной $\hat{\omega}_f$ благодаря константам *с* и *d*. Настройка фильтра сводится к определению констант *с* и *d*, которые, в свою очередь, определяют максимальную скорость изменения градиента полезного сигнала. Исходя из этого следует, что при настройке фильтра (16), (17) должны учитываться динамические свойства входного процесса.

Если входной сигнал содержит компонент с заведомо большей скоростью, чем полезный сигнал, то этот компонент будет подавлен фильтром (16), (17). Если в возмущении $\delta(t)$ присутствует большой по амплитуде выброс, вызванный, например, сбоем датчика, то нелинейный фильтр (16), (17) в силу свой структуры не пропустит его, в отличие от любого линейного фильтра.

Результат работы алгоритма идентификации частоты (формулы (9), (14) и (15)) без использования фильтра (16), (17) зависит только от выбора параметров k, a и b [15]. С ростом значений этих параметров увеличится скорость сходимости оценки частоты в установившуюся область, но размер этой области, как и дисперсия сигнала, будет увеличиваться. Наличие фильтра (16), (17) обеспечивает существенное повышение точности оценивания при сохранении быстродействия алгоритма идентификации частоты.

Для иллюстрации работоспособности предложенной схемы идентификации рассмотрим пример.

Пример. Сравним работу схемы идентификации, предложенной в настоящей статье, со схемой, рассмотренной в работе [15]. На рис. 2 и 3 приведены результаты моделирования схем идентификации (9), (14)—(17).

Возмущение $\delta(t)$ типа белый шум моделировалось как последовательность случайных чисел с нормальным распределением, сменяющихся на каждом интервале времени t_0 . На рис. 2, *а* представлена временная диаграмма для измеряемого сигнала $\overline{y}(t)$, где $y(t) = 8\sin(1,3t)$. При моделировании были выбраны следующие параметры сигнала $\delta(t)$: мощность N = 0,001, интервал квантования $t_0 = 0,001$ с. На рис. 2, *б* представлены результаты

11

оценивания частоты при следующих параметрах алгоритма идентификации: a = 0,5, b = 0,3, k = 0,2, c = 0,3, d = 0,3. Оценка частоты $\hat{\omega}$, полученная по алгоритму (9), (14), (15), соответствует результату, приведенному в работе [15]. При использовании дополнительного фильтрующего устройства (16) получена оценка $\hat{\omega}_f$. Очевидно, что оценка $\hat{\omega}_f$ точнее $\hat{\omega}$ при том же времени переходного процесса.

В статье [15] рассматривается возможность компенсации возмущения $\delta(t)$ за счет выбора коэффициентов *a* и *b* без использования дополнительных фильтрующих устройств. Рис. 3 иллюстрирует, что нелинейный фильтр (16), (17) позволяет получить более точную оценку за меньшее время. На рис. 3, *a* представлена временная диаграмма для измеряемого сигнала $\overline{y}(t)$, где $y(t) = 8\sin(1t+1)$. В этом случае при моделировании были выбраны следующие параметры сигнала $\delta(t)$: мощность N = 0,05, интервал квантования $t_0 = 0,05$ с. На рис. 3, *б* представлены результаты оценивания частоты при различных параметрах схемы идентификации: оценки $\hat{\omega}_1(t)$ и $\hat{\omega}_2(t)$ получены на основе алгоритма (9), (14), (15) при $a_1 = 0, 2, b_1 = 0, 2, k_1 = 0, 7$ и $a_2 = 0, 1, b_2 = 0, 1, k_2 = 0, 2$ соответственно; оценка $\hat{\omega}_f(t)$ получена на основе сигнала $\hat{\omega}_1(t)$ при c = 1, d = 1. Здесь, как и на рис. 2, видно, что использование нелинейного фильтра значительно повышает точность оценивания частоты. Для обеспечения такой же точности оценивания без использования фильтра (16), (17), следуя работе [15], были выбраны другие параметры схемы идентификации. Сравнение времени переходного процесса для $\hat{\omega}_2(t)$ и $\hat{\omega}_f(t)$ показывает очевидное преимущество метода оценивания частото процесса для $\hat{\omega}_2(t)$ и $\hat{\omega}_f(t)$ показывает очевидное преимущество метода оценивания частото систо оценивания частото систо оценивания частото систо оценивания частото в систо оценивания частова систо процесса для $\hat{\omega}_2(t)$ и $\hat{\omega}_f(t)$ показывает очевидное преимущество метода оценивания частова систо систо систо систо оценивания частова оценивания част

тоты с использованием нелинейного фильтра (16), (17).

Заключение. Предложен новый метод оценивания частоты сигнала, содержащего полезную составляющую в форме синусоидальной функции времени, и возмущающего сигнала, вызванного помехами в канале измерения. Достоинством представленной схемы является обеспечение желаемой точности идентификации частоты за меньшее время в сравнении с известными мировыми аналогами.

Работа выполнена при поддержке Российского фонда фундаментальных исследований, грант № 09-08-00139-а.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Bodson M., Douglas S. C.* Adaptive algorithms for the rejection of periodic disturbances with unknown frequencies // Automatica. 1997. Vol. 33. P. 2213—2221.
- 2. *Hsu L., Ortega R., Damm G.* A globally convergent frequency estimator // IEEE Transact. on Automatic Control. 1999. Vol. 46. P. 967–972.
- 3. *Mojiri M., Bakhshai A. R.* An adaptive notch filter for frequency estimation of a periodic signal // IEEE Transact. on Automatic Control. 2004. Vol. 49. P. 314—318.
- 4. *Marino R., Tomei R.* Global estimation of unknown frequencies // IEEE Transact. on Automatic Control. 2002. Vol. 47. P. 1324—1328.
- 5. Xia X. Global frequency estimation using adaptive identifiers // IEEE Transact. on Automatic Control. 2002. Vol. 47. P. 1188—1193.
- 6. Obregon-Pulido G., Castillo-Toledo B., Loukianov A. A. Globally convergent estimator for *n*-frequencies // IEEE Transact. on Automatic Control. 2002. Vol. 47. P. 857—863.
- 7. Bobtsov A., Lyamin A., Romasheva D. Algorithm of parameter's identification of polyharmonic function // 15th IFAC World Congress on Automatic Control. Barcelona, Spain, 2002.
- 8. Бобцов А. А., Кремлев А. С. Адаптивная идентификация частоты смещенного синусоидального сигнала // Изв. вузов. Приборостроение. 2005. Т. 48, № 4. С. 22—26.

- 9. *Hou M.* Amplitude and frequency estimator of a sinusoid // IEEE Transact. on Automatic Control. 2005. Vol. 50. P. 855-858.
- 10. Арановский С. В., Бобцов А. А., Кремлев А. С., Лукьянова Г. В. Робастный алгоритм идентификации частоты синусоидального сигнала // Изв. РАН. Сер. Теория и системы управления. 2007. № 3. С. 1—6.
- 11. Арановский С. В., Бобцов А. А., Кремлев А. С. и др. Идентификация частоты смещенного синусоидального сигнала // Автоматика и телемеханика. 2008. № 9. С. 3—9.
- 12. Aranovskiy S., Bobtsov A., Kremlev A. et al. Identification of frequency of biased harmonic signal // IFAC Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP 07). St. Petersburg, 2007.
- 13. *Bobtsov A*. New approach to the problem of globally convergent frequency estimator // Intern. Journal of Adaptive Control and Signal Processing. 2008. N 3. P. 306—317.
- 14. Aranovskiy S., Bobtsov A., Kremlev A. et al. Identification of frequency of biased harmonic signal // European Journal of Control. 2010. N 2.
- 15. Бобцов А. А., Николаев Н. А., Слита О. В. Новая схема идентификации частоты синусоидального сигнала // Мехатроника, автоматизация, управление. 2010. № 11. С. 2—4.
- 16. Пыркин А. А. Адаптивный алгоритм компенсации параметрически неопределенного смещенного гармонического возмущения для линейного объекта с запаздыванием в канале управления // Автоматика и телемеханика. 2010. № 8. С. 62—78.
- 17. Бобцов А. А., Колюбин С. А., Пыркин А. А. Компенсация неизвестного мультигармонического возмущения для нелинейного объекта с запаздыванием по управлению // Там же. 2010. № 11. С. 136—148.
- 18. *Первозванский А. А.* Случайные процессы в нелинейных автоматических системах. М.: Физматгиз, 1962. 352 с.

Свечения об ивтория		
Алексей Алексеевич Бобцов		д-р техн. наук, профессор; Санкт-Петербургский государственный
		университет информационных технологий, механики и оптики, ка-
		федра систем управления и информатики;
		E-mail: bobtsov@mail.ifmo.ru
Андрей Валентинович Крылов		канд. техн. наук; ЗАО "НАВИС", Санкт-Петербург; начальник отдела;
		E-mail: a.krylov@navisincontrol.com
Антон Александрович Пыркин		канд. техн. наук; Санкт-Петербургский государственный университет информационных технологий, механики и оптики, кафедра систем управления и информатики; E-mail: a.pyrkin@gmail.com

Рекомендована кафедрой систем управления и информатики СПбГУ ИТМО

Поступила в редакцию 18.01.11 г.