УДК 623.5

А. В. КРАСИЛЬНИКОВ

ПРОЕКТНОЕ ОБОСНОВАНИЕ КОНСТРУКТИВНО-ТЕХНОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК УСТРОЙСТВА ТОРМОЖЕНИЯ ДВИЖУЩЕГОСЯ ПОДВОДНОГО АППАРАТА

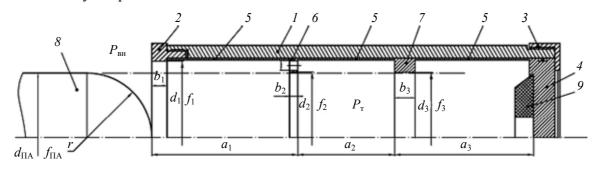
Рассматривается один из важных вопросов технологического обеспечения испытаний пусковых устройств малогабаритных необитаемых подводных аппаратов в условиях производственных помещений. Предлагается иллюстрированная примером методика проектного расчетного обоснования технических характеристик тормозного устройства специализированного гидродинамического стенда.

Ключевые слова: автономные необитаемые подводные аппараты, тормозное устройство, схемотехническое решение, технические характеристики, проектное обоснование.

В последнее время ведущими морскими державами активно развиваются [1, 2] автономные необитаемые малогабаритные подводные аппараты (ПА), называемые в литературе также подводными роботами. Спектр их применения достаточно широк. Прежде всего, речь идет об исследованиях шельфа Мирового океана: картографировании дна, взятии проб грунта, оценке гидрофизических свойств воды в зависимости от глубины и т.д. Также предполагается широкое использование подводных роботов в военных целях: при гидроакустическом наблюдении за подводными целями, для обнаружения и уничтожения мин, для охраны подводных нефте- и газотрубопроводов, для предупреждения террористических актов и т.д. В настоящее время за рубежом активно эксплуатируются более 600 подводных роботов различного целевого назначения.

Для отработки пусковых устройств роботизированных ПА и проверки их работоспособности при различных эксплуатационных условиях создаются специальные гидродинамические стенды [3], в которых аппараты движутся с большой скоростью.

В настоящей статье предлагается методика проектного обоснования гидродинамических характеристик тормозного устройства оригинальной, защищенной патентом РФ [4], конструкции, обеспечивающего торможение и остановку движущегося с большой скоростью подводного аппарата, корпус которого имеет калиброванную часть.


Рассматриваемое тормозное устройство, конструктивная и расчетная схема которого приведена на рис. 1, использует движущийся ПА как плунжер и содержит тормозную трубу I с передним 2 и задним 3 упорными элементами. Упорный элемент 2 (шириной b_1) имеет входное для плунжера отверстие диаметром d_1 , а упорный элемент 3 фиксирует герметичную крышку 4, между которой и упорным элементом 2 установлены с помощью распорных втулок 5 сменные обтюрирующие кольца 6 и 7 (шириной b_2 и b_3 соответственно).

В первом обтюрирующем кольце 6 выполнены отверстие диаметром d_2 с заходной фаской и сквозные дросселирующие отверстия диаметром $d_{\rm T}$ (количеством n_1) на торцевой поверхности. Второе кольцо обтюрации 7 имеет проходное для ПА отверстие диаметром d_3 .

Принято, что в тормозной трубе (TT) установлены только два кольца обтюрации, а длина калиброванной части ПА-плунжера δ (диаметром $d_{\Pi A}$ и площадью поперечного сечения $f_{\Pi A}$) превышает длину TT. При этом ПА имеет сферический оголовок радиусом r.

При вхождении в тормозную трубу подводного аппарата, движущегося по инерции с начальной скоростью $v_{\Pi A0}$, в жидкости возникает обусловливающее торможение ПА давление $P_{\text{т}}$, избыточное по отношению к внешнему гидростатическому давлению $P_{\text{вн}}$.

Вследствие этого вытесняемая плунжером жидкость будет вытекать через сечения в кольцах обтюрации, дросселирующие отверстия и кольцевой зазор между упорным элементом 2 и Π A-плунжером 8.

Puc. 1

Приведем аналитические зависимости, позволяющие произвести оценку конструктивнотехнологических характеристик тормозного устройства.

Уравнение движения ПА в тормозном устройстве может быть записано в следующем виде:

$$\frac{dv_{\Pi A}}{dt} = \frac{1}{m_{\Pi A} + m_{xx}} \left(P_{BH} f_{\Pi A} - F_{T} - N_{H} - R_{\Gamma \Pi} \right), \tag{1}$$

где $\frac{dv_{\Pi A}}{dt}$ — ускорение аппарата; $m_{\Pi A}$ — масса аппарата; m_{π} — приведенная масса вовлекаемой в движение жидкости (воды); F_{τ} — усилие торможения; N_{H} — сила трения изделия о направляющие, не показанные на рис. 1; $R_{\tau A}$ — гидродинамическое сопротивление движению

При проектном расчете примем следующие допущения:

- жидкость (вода плотностью $\rho = 1000 \text{ кг/м}^3$) несжимаема;
- масса жидкости изменяется по формуле

$$m_{\rm x} = \rho(a_1 + a_2 + a_3 - l_{\rm IIA})f_{\rm IIA},$$

где $l_{\text{ПА}}$ — расстояние, пройденное аппаратом;

 $--P_{\rm BH} = {\rm const};$

изделия.

- длиной зазора в обтюрирующем кольце 6 можно пренебречь;
- усилие противоударного амортизатора 9 несущественно.

Тормозное усилие $F_{\scriptscriptstyle \rm T}$ определяется соотношениями

$$F_{\mathrm{T}} = \begin{cases} \pi l_{\Pi \mathrm{A}} (d_{\Pi \mathrm{A}} - l_{\Pi \mathrm{A}}) P_{\mathrm{T}} + \left[f_{\Pi \mathrm{A}} - \pi l_{\Pi \mathrm{A}} (d_{\Pi \mathrm{A}} - l_{\Pi \mathrm{A}}) \right] P_{\mathrm{BH}}; \\ P_{\mathrm{T}} f_{\Pi \mathrm{A}}; \\ \pi (l_{\Pi \mathrm{A}} - a_{1}) (d_{\Pi \mathrm{A}} + a_{1} - l_{\Pi \mathrm{A}}) P_{\mathrm{T}} + \left[f_{\Pi \mathrm{A}} - \pi (l_{\Pi \mathrm{A}} - a_{1}) (d_{\Pi \mathrm{A}} + a_{1} - l_{\Pi \mathrm{A}}) \right] P_{6-7}; \\ P_{\mathrm{T}} f_{\Pi \mathrm{A}} + N_{\mathrm{T6}}; \\ \pi (l_{\Pi \mathrm{A}} - a_{1} - a_{2}) (d_{\Pi \mathrm{A}} + a_{1} + a_{2} - l_{\Pi \mathrm{A}}) P_{\mathrm{T}} + \left[f_{\Pi \mathrm{A}} - \pi (l_{\Pi \mathrm{A}} - a_{1} - a_{2}) (d_{\Pi \mathrm{A}} + a_{1} + a_{2} - l_{\Pi \mathrm{A}}) \right] P_{7-4} + N_{\mathrm{T7}}; \\ P_{\mathrm{T}} f_{\Pi \mathrm{A}} + N_{\mathrm{T6}} + N_{\mathrm{T7}}, \end{cases}$$

где P_{6-7} , P_{7-4} — давление между соответственно обтюрирующими кольцами 6, 7 и кольцом 7 и крышкой 4; $N_{\text{T}6}$, $N_{\text{T}7}$ — сила трения об обтюрирующие кольца 6 и 7, при соответствующих следующих граничных условиях:

$$\begin{split} 0 &\leq l_{\Pi \mathbf{A}} < r; \\ r &\leq l_{\Pi \mathbf{A}} < a_1; \\ a_1 &\leq l_{\Pi \mathbf{A}} < a_1 + r; \\ a_1 + r &\leq l_{\Pi \mathbf{A}} < a_1 + a_2; \\ a_1 + a_2 &\leq l_{\Pi \mathbf{A}} < a_1 + a_2 + r, \\ a_1 + a_2 + r &\leq l_{\Pi \mathbf{A}} < a_1 + a_2 + a_3. \end{split}$$

Используемые здесь и в последующих формулах обозначения соответствуют приведенным на рис. 1.

Уравнение неразрывности потока жидкости в кольцевых сечениях тормозной трубы может быть представлено в виде

$$v_i f_i = v_{\Pi A} f_{\Pi A}$$

где v_i — скорость жидкости в i-м сечении; f_i — площадь i-го сечения.

Тогда скорость воды в любом сечении ТТ выразится как

$$v_i = \frac{f_{\Pi A}}{f_i} v_{\Pi A} \,. \tag{2}$$

Продифференцировав выражение (2), получим

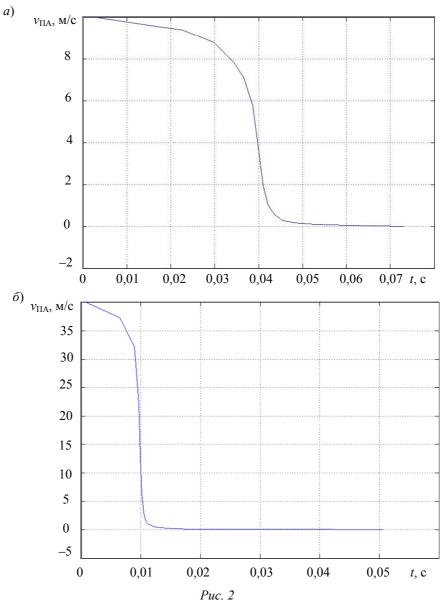
$$\frac{dv_i}{dt} = \frac{f_{\Pi A}}{f_i} \frac{dv_{\Pi A}}{dt}.$$
 (3)

Запишем уравнение Бернулли для неустановившегося потока жидкости между сечениями передней части плунжера и входным отверстием тормозной трубы:

$$P_{\rm T} + \frac{\rho}{2} v_{\rm IIA}^2 = P_{\rm BH} + \frac{\rho}{2} v_{\rm IIA}^2 \left(\frac{f_{\rm IIA}}{f_1 - f_r} \right)^2 + \xi_{\rm \Sigma} \frac{\rho}{2} v_{\rm IIA}^2 + \rho L_{\rm \Sigma} \frac{dv_{\rm IIA}}{dt}, \tag{4}$$

где ξ_{Σ} и L_{Σ} — соответственно приведенные к сечению $f_{\Pi A}$ суммарный коэффициент гидравлического сопротивления тормозной трубы и ее суммарная длина; f_1 — площадь кольцевого зазора в упорном элементе 2; f_r — площадь j-го сечения сферического оголовка.

Подставив в уравнение (4) выражения (1) и (3), после алгебраических преобразований получим:


$$\begin{split} P_{\mathrm{T}} = & \frac{1}{1 + \frac{\rho L_{\Sigma}}{m_{\Pi \mathrm{A}} + m_{\mathrm{K}}} f_{1}} \Bigg[P_{\mathrm{BH}} \Bigg[1 + (f_{\Pi \mathrm{A}} - f_{\mathrm{H}}) \frac{\rho L_{\Sigma}}{m_{\Pi \mathrm{A}} + m_{\mathrm{K}}} \Bigg] + \frac{\rho}{2} \Bigg[\bigg(\frac{f_{\Pi \mathrm{A}}}{f_{1} - f_{r}} \bigg)^{2} + \xi_{\Sigma} - 1 \Bigg] v_{\Pi \mathrm{A}}^{2} - \\ & - \bigg(\frac{\rho L_{\Sigma}}{m_{\Pi \mathrm{A}} + m_{\mathrm{K}}} \bigg) \Big(j_{1} N_{\mathrm{T}6} + j_{2} N_{\mathrm{T}7} + f_{2} P_{6 - 7} + f_{3} P_{7 - 4} + N_{\mathrm{H}} + R_{\mathrm{\Gamma}\Pi} \bigg) \Bigg], \end{split}$$

где j_1, j_2 — константы; $f_{\rm H}$ — площадь сечения непоказанных направляющих.

С использованием приведенных соотношений в среде программирования MatLab была составлена программа, позволяющая моделировать процесс торможения ПА, движущегося в жидкости.

Для расчетного примера в качестве базового был принят гипотетический ПА массой 20 кг, имеющий калиброванный корпус диаметром 127 мм. На рис. 2, a, δ показаны полученные по результатам математического моделирования процесса торможения такого ПА зави-

симости его скорости от времени при начальных значениях $v_{\Pi A0}$, равных 10 и 40 м/с соответственно.

Расчетные значения времени торможения (T) и пройденного аппаратом расстояния до полной его остановки $L_{\Pi A, \ \kappa}$, в зависимости от его начальной скорости, приведены в таблице.

<i>v</i> _{ПА0} , м/с	<i>T</i> , c	$L_{\Pi A, \kappa}$, м
40	0,034	0,371
30	0,035	0,370
20	0,044	0,370
10	0,071	0,369

Как следует из таблицы, для торможения ПА, имеющего указанные выше характеристики, длина тормозной трубы предложенной конструкции может быть принята равной примерно 0,4 м. В этом случае ее использование будет эффективно при начальных скоростях ПА до 40 м/с, что практически вполне приемлемо.

Таким образом, использование предложенного тормозного устройства позволяет проводить на стенде все необходимые исследования пусковых систем малогабаритных подводных аппаратов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Илларионов Г. Ю., Сиденко К. С., Сидоренков В. В.* Подводные роботы в минной войне: Монография. Калининград: ОАО "Янтарный сказ", 2008. 116 с.
- 2. Котов А. С., Соболев И. И. Сверхмалое высокоинтеллектуальное подводное оружие // Подводное морское оружие: Науч.-техн. сб. СПб: ФГУП ЦНИИ "Гидроприбор", 2003. Вып. 2.
- 3. Пат. 2398199 РФ. Гидродинамический стенд / О. И. Ефимов, А. В. Красильников, Р. В. Красильников. 2010.
- 4. Пат. 87510 РФ. Устройство торможения движущегося в воде тела. Полезная модель / О. И. Ефимов, А. В. Красильников, Р. В. Красильников. 2009.

Сведения об авторе

Антон Валентинович Красильников

канд. техн. наук, доцент; Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, кафедра технологии приборостроения; E-mail: a.v.krasilnikov@mail.ru

Рекомендована кафедрой технологии приборостроения

Поступила в редакцию 21.06.10 г.