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Interpolation rule for estimating the greatest stress in a structure
subject to creep
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Several widely used in Food technologies simple structures made of material for which the
creep strain rate is proportional to the nth power of stress are studied with a view to
determining the way in which the greatest stress in the structure varies with the exponent n
when the geometry of the structure and the load carried by the structure remain unchanged.

From a study of the results a simple empirical linear rule for interpolating for greatest stress
between the specially simple cases n=I1 and n—x (which correspond to exact analogues of
linear elastic and perfectly plastic material respectively) is devised. The rule was verified on
the base K-method [2].
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Heckonvbko  wiupoko  NPUMEHAEMBIX 6  NUWEB0U  NPOMBIUMACHHOCHU  RPOCHIbIX
KOHCMPYKYUI, U320MOG6IECHHbIX U3 Mamepuana, 01 KOMopozo CKopocmb oOedopmauuu
noA3yuecmu NPONOPUUOHANbLHA N-0ll CMENEeHU HANPANCEHUS, PACCMAMPUBAIOMC C MOYUKU
3PeHUsL ONpeoeeHUs HANPABIeHUs, 8 KOMOPOM HAUOOIbUEee HANPAIHCEHUE 8 KOHCIPYKUUU
UBMEHACMCA 6 3A6UCUMOCHU OM noKazamensa N, Koz0a 2eomempus KOHCHMPYKUUU U
603/10JICCHHAA HA Heé HAZPY3KA OCMAIOMCA HeU3IMEHHbIMIU.

Ha ocnoee wusyuenusn pe3yniomamoé npeonazaemcs npocmoe JUHENHOe NPAGUTIO
UHMEPROAUPOCAHUA HAUDOTbUIE20 HANPANCEHUA MEHCOY nPpoCmblmu ciaydaamu N=I u N=oo,
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COOMBEMCMEYIOWUMU  MOYHBIM  PEUEHUAM JIUHEHUHOU YRPY2oCmu U  UOedanbHOU
naacmuunocmu mamepuana. Ilpaeuno umnmepnonupoeanus 011 paccmampueaemvlx
KOHCMPYKUuii 0v110 nposepeno Ha ochose K-memooa [2].

Knioueevle cnosa: mon3ydectb, OTHOCUTEIbHBIN KOA(P(GUIIMCHT KOHIICHTPAIIMU HANPSHKCHHM;,
MPABUJIO UHTEPIIOIUPOBAHUS

Introduction

In the design of mechanical engineering structures to operate in the creep range of the
material of which they are made, it is often desirable to have an estimate of the greatest stress
which will occur in the structure in the presence of creep. For a structure designed to operate
over long periods of time, it is important that there should be an extended secondary creep
phase at the highest stress level everywhere in the structure, while for a structure of shorter
lifetime an estimate of the greatest stress may be useful in estimating the rupture life of the
structure.

Unfortunately the stress-strain-time-temperature characteristics of engineering materials
are usually so complicated that even if they could be expressed in terms of mathematical
relationships the resulting structural calculations would be very complicated indeed.

In many cases results useful as a guide to the designer can be obtained by studying
analytically the structural action corresponding to the secondary creep phase of the material.
Analysis of this type has obvious relevance to structures designed for long-time operation, but,
less obviously, it is also useful in the study of structures intended for shorter lifetimes, where
primary creep plays an important role, if the results are used with engineering judgment [4].

Secondary creep analysis of structures

The secondary creep behavior of materials in uniaxial tension is specified by the equation
E=f(e) . ... ... ....(1Q)
for
o< g, A )

where £ represents secondary creep rate,

g represents stress

Aret V.A. n ap. Interpolation rule for estimating the greatest stress in a structure subject to creep/ V.A. Aret, A.M.
Eliseev, L.A. Fedorova // HayuHbii »KypHan HWY UTMO, 2013. - Ne3.[dneKTpoHHbIN  pecypc]:
http://www.processes.ihbt.ifmo.ru



Mpouecchbl M annapaTbl NULWEBbLIX MPOM3BOACTB Ne 3, 2013

and f{o) is a function of stress which characterizes the material at the appropriate temperature.
The stress o, is a somewhat ill-defined limit below which the secondary creep phase exists for

the proposed lifetime of the structure, and above it does not.
The simplest form of equation (1) is for f(o) to be a single power term in G:

E=Bo™ . ... ..., 3)

where B and n represent the material properties at the appropriate temperature. (It is understood
as usual that a minus sign is to be inserted in equation (3) where otherwise £ and ¢ would be

opposite sign)

After form of equation (1) which usually fits experimental data rather better than that
equation (3) over wide ranges of stress levels is:

¢ = Csinh (.;T) .......... (4)
where C and o, represent the material properties at the appropriate temperature. From the
analytical point of view the simple law, equation (3), has much to recommend it in preference
to equation (4), and other simple forms of equation (1), as it leads to neater analysis. An
especially convenient property of equation (3) is that the special cases n=1 and n—o0 are exact
analogues of linear elasticity and rigid-perfect plasticity respectively [1,2]. The fact that the real
material behavior may be closer to equation (4) than to equation (3) fortunately is not a strong
argument in favor of equation (4), especially in cases where the interest is in the most highly
stressed parts of the structure; for equation (3), with suitably chosen values of n and B, closely
approximates equation (4) over at least a decade of strain rate. There is always, of course,
experimental scatter which makes determination of the constants B and n in equation (3) or of C
and og in equation (4) rather imprecise.

This somewhat intuitive argument in favor of the simpler law, equation (3), is
strengthened by the fact that results of analyses using equation (4) (such as are found in
reference [2], for example) can usually be correlated extremely well on the basis of an n-power
law.

Although structural analysis using the simple power law, equation (3), is less difficult
than that using equation (4), it is unfortunately considerably more difficult (except in specially
simple structures) for general values of n than for the two special cases n=1 and n—o0; and
values of n other than unity are the ones which are normally of interest, as they fit experimental
data best for most engineering materials.

The establishment of interpolation schemes
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The object of this paper is to investigate ways of estimating the value of greatest stress
in a structure of specified geometry and carrying a giving load for any value of the exponent n
in equation (3) without actually performing a non-linear analysis, by interpolating in some way
between the answers found in the two specially simple cases, n=1 and n—o. In other words,
the object of the work is to establish simple ways of interpolating between solutions in linear
elasticity and perfect plasticity for any value of the exponent n. In this investigation the energy
dissipation rate interpolation scheme has been dropped in favor of a stress interpolation scheme
which, is more generally applicable, and is almost always conservative.

In order to formulate a general interpolation scheme for the greatest stress in terms of n,
it is necessary to know in general the manner in which the greatest stress does depend upon the
value of exponent n. Even if general theorems in this field can be established, they are likely to
be much more difficult to use to obtain close answers to problems than those that deal, for
example, with effects integrated over the whole structure.

The only alternative therefore is to study the relationship between the greatest stress and
the exponent n for a variety of structures. This paper describes stress analysis for six simple
structures, and suggests a simple scheme of interpolation based on the results, which may well
be valid in general.

Six structural types

The six simple structures were chosen to derive their structural action from a variety of
primary structural effects:

(a) Bending in one dimension,
(b) Bending in two dimensions,
(c) Plane stress,

(d) Plane strain.

Details of the structures are given in Table 1. In general it seems reasonable to expect
that the behavior of a structure and in particular the relationship between the greatest stress and
the exponent n should depend upon the primary structural effect, to some extent independently
of the complexity of the structure as a whole. Thus any generalizations which can be made from
simple structures depending on different primary structural effects may well be valid for more
complex structures depending on the same effects. In particular, the structures studied in this
paper may be typical, as far as the dependence of the greatest stress upon the exponent n is
concerned, of a very wide group of mechanical engineering structures.

Creep law for triaxial stress
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For structures in which the material is in state of pure tension or compression
throughout (which have, of course, only ideal existence) equation (3) is adequate to specify the
material behavior, and ‘greatest stress’ means simple the largest absolute value of o anywhere
in the structure. For structures in which the material is subject to triaxial stress it is necessary to
generalize equation (3) and to define an effective stress parameter for use in discussion of
greatest stress, for it is obviously inadequate to think in terms of individual stress components.

The usual choice of a simple and rigorous generalization of equation (3) to triaxial
stress lies between generalizations corresponding, in the limit n—a, to the von Mises or the
Tresca yield condition respectively.

For some problems the Tresca-type idealization of real material is advantageous as it
leads to simple solutions and gives good estimates of the over-ali energy-dissipating
characteristics of the structure. However, for problems in which the details of stress distribution
are to be studied it seems more satisfactory to use a material idealization in which the strain rate
tensor is uniquely determined by the stress tensor. A simple, convenient, and physically
realistic law is [3]

¢y=BGLZ (34), . ... ... ()

where Sj; is the stress deviation and J, is the second invariant of the stress deviation; 2J;
= §;; * Sjj. For n=1 equation (5) describes a material analogous to a linear elastic material with
Poisson’s ratio equal to %. For the remainder of this paper use of the term ‘linear elastic’ will
imply this special value of Poisson’s ratio. In so far as the rate of dissipation of energy per unit
volume has stress dependence involving only J,,
iig. =B(3])Y/2 . . ()

Lf oy
it seems reasonable to regard the quantity

=@ - NN (A

as ‘stress’ for the purposes of discussing greatest stress. In the remainder of this paper the
term ‘greatest stress’ will be taken to mean the greatest value of o anywhere in the structure.
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Table 1.

It has already been mentioned that in the case n—oo the material is analogous to a rapid-
perfectly plastic material (under monotonically increasing load). This may be seen if B in
equation (3) is replaced by gy where op Is the yield stress of the material. A little care is

required in specifying what is meant by the stress distribution under a given set of loads as
n—oo, because whereas for all finite values of n the structure can only deforms under any
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specified load, for n—oo the structure can only deform if the applied load happens to
correspond to the collapse load for the structure made of material having yield stress c,. We
shall assume throughout this paper that in cases n—oo the yield stress oo is adjusted to
magnitude so that the structure is in a collapse state under the application of the specified loads.
In structures C,D and E (Table 1) the material is in a state of bi-axial stress with principal
directions determined by symmetry. In these conditions, putting o3 = 0 in equation (5) gives:
£ =Ba" " (Jl — %0‘2)
. —n—1 1
£, = Ba (Jg _Egl)
where
ocg=(cl+0?—0,0x)Y* . .. ... .. (8)
In structure F a three-dimensional state of stress exists, and equation (5) must be used.
The problem is simplified, however, by the fact that by symmetry the axial strain rate is
constant over the whole cross-section.

Choice of a reference state of stress

Stress concentration effects are usually discussed with respect to a reference state of
stress. To some extent the definition of the reference stress is arbitrary. Where in a structure the
bulk of the material is stressed to approximately the same level it is appropriate to use this bulk
stress as the reference stress. Examples are the problem of a stretched sheet with a hole
(structure E) and (in the field of shells) the cylindrical or spherical pressure vessel with a small
nozzle or other geometrical discontinuity.

For most of the structures considered in this paper there is no such obvious reference
state of stress, so some device is necessary if comparative stress concentration effects are to be
studied. For the purposes of this paper it seems reasonable to use as the reference state of stress
the greatest stress in the structure for the case n=1.

In general, as n=1 defines an especially simple material, the greatest stress may be
determined without too much difficulty (by linear-elastic analysis) in terms of the applied load
and the geometrical parameters of the structure.

We thus define a ‘Relative Stress Concentration Factor’, F, by:
Greatest stress in structure for materialn=r

= . , . (9
" Greatest stress in structure for materialn =1 ®)

it being understood that the geometry of the structure and the load carried are the same for the
cases n=1 and n=r.

Details of the solutions

The structures considered are shown schematically in Table 1.
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All the usual assumptions of linear-elastic small deflection theory are used; thus we
learn nothing, for example, about local stress concentration effects in the regions where plates
join thicker plates (structure E) or rigid foundations (structure D). Nor do we learn anything
about plates with membrane action.

Thus while it may seem paradoxical that acute, local, stress concentration effects have
been ignored, it seems clear that the study, in so far as it leads to empirical general conclusions,
may be of some use in tackling problems of local stress concentration factors.

In Fig.1 the relative stress concentration factor F, is plotted against the material
parameter m, which is the reciprocal of the exponent n:

m=1
mn
The factor F,, is defined as in equation (9) but with an obvious change of subscript.
For most of the structures solutions were obtained, in addition to those for n=1 and n—o
(m=1 and m=0, respectively) form =0.1, 0.2, 0.4, 0.6, and 0.8.
Table 1 gives for each structure the value of the greatest stress, amax in terms of the load

and geometrical parameters for the case n=1. Use of this expression in conjunction with the
appropriate graph in Fig.1 gives the value of 7. for any load and any value of the exponent n.

Schemes for interpolation

Consider now the problem of interpolation for F,. Let us suppose that we have
performed a linear-elastic analysis (with Poisson’s ratio equal to '2) and a perfectly plastic
analysis of the structure, and have in consequence obtained values of Gmax n=1 and Fo. We wish
to interpolate between unity and F, for F,, and hence, using equation (9) to obtain an estimate
of the greatest stress for the appropriate value of m. Clearly, from Fig.1 a simple linear
interpolation

F,.=F,(1-m)+m . ... ..... (10)

IS unsatisfactory in general, for although it gives good results in some cases it would

lead to serious underestimates of the greatest stress in others.
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Fig.1 Results for structures shown in Table 1
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It will be appreciated that an underestimate of the greatest stress could have serious
consequences, especially if the greatest strain were a critical factor, as it might be for many
structures required to operate for a specified period of time: see equation (3), where n may be
large.

Clearly it would be useful to have, in addition to the values of o n-1 and Fq, an
estimate of the curvature of the graph F,,, m. As will be shown later such an estimate may be
obtained by performing an additional linear elastic ‘thermal’ stress type analysis.

1.0
EQUATION (11)
EQUATION (10)
EQUATION ( 12)
F,
EXACT F_ .mCURVE
05(F +1)
Fo 0
0
0 1.0

m
Fig.2 Interpolation curve, schematic
However, an analysis of this sort is by no means trivial, and it may well be desirable to
make an estimate of the maximum stress solely on a basis of the linear elastic and perfectly

plastic solutions.
In this case the following formula may be used:

szFD(l_zm)+(1_;m) ...... C.an

Fig.2 shows equation (11) schematically, together with equation (10).

Judging by the results shown in Fig.1 equation (11) is almost always conservative:
among the present examples it is only on the unsafe side for structure B,y =1 for 1 <n <2.5
and for structure C, p = 0.6 and 0.4 for /< n < 1.5. The first of these exceptional cases, an
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idealized I-section beam with rigidly clamped ends is somewhat unrealistic; practical I-beams
have y equal approximately to 72 , for which equation (11) is just on the safe side for all values
of n. the second case is perhaps more serious, for it means that equation (11) becomes less
conservative as the peripheral mass increases. However, equation (11) is in the safe side for
values of n>3 and is only slightly on the unsafe side in any case.

In the structures for which the F,, , m relationship is nearly linear, equation (11) tends to
be very conservative, particularly for the lower values of m (high values of n); but is general
this degree of conservatism should be tolerable, in view of many other uncertainties.

The analysis analogous to that for thermal stress, mentioned above analogous gives the
value of the slope dF.,,/dm at m=1. Call this slope A. The line

Is thus the tangent to the curve F, , m at m=1 (see Fig.2) and the difference in slope
between it and line (10) is thus a measure of the curvature of the curve F, ,m, assuming (see
above) that there are no points of equation. If line (12) lies below line (10) it seems safe to use
equation (10) for interpolation purposes, as the curve F,, , m is concave upwards over the whole
range of n. If line (12) lies above line (10), equation (12) probably provides a safe interpolation
scheme in which the degree of conservatism increases as n increases. If line (12) lies above line
(11) this would seem to imply that the judgment which produced the constants in equation (11)
was not sufficiently cautious. If line (12) is only slightly above line (11) equation (11) may well
be conservative for, say, n >2, and acceptably unconservative for n < 2.

Conclusion

The simple interpolation procedures presented in this paper is intended to provide a
useful extra analytical and design tool for the engineer. Application of the rules does not of
course in any way absolve the engineer of the responsibility of avoiding high local stress
concentrations by suitable detail design, etc., or of paying attention to the determination for
loads. A particularly important design consideration for structures operating in the creep range
is the distribution of temperature over the structure: this has not been considered at all in this
work.

Estimate of the greatest stress for the structures to be considered was made according to
K-method [2]. The values to be obtained are close to those determined on the base interpolation
rule. They are not given here because their inclusion would made this paper too long.

In spite of these obvious shortcomings it is hoped that the results of this paper may
remove a little of the design guesswork in a difficult design field.
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