Например, Бобцов

ИССЛЕДОВАНИЕ РАЗРЕШИМОСТИ ЗАДАЧИ ШТУРМА–ЛИУВИЛЛЯ ПРИ ПОСТРОЕНИИ АСИМПТОТИЧЕСКОГО РЯДА

Аннотация:

Предмет исследования. Построение асимптотических разложений решений уравнений в частных производных с малым параметром сводится обычно к последовательному решению цепочки задач Штурма–Лиувилля. Чтобы найти некоторый член ряда, необходимо решить неоднородную краевую задачу с источником на оси цилиндра. При этом соответствующая однородная задача имеет нетривиальное решение. Потому возникает содержательный вопрос о реализуемости предложенного способа построения. Настоящая работа посвящена построению таких асимптотических разложений. Метод. Для доказательства необходимого условия используется обычная техника интегрирования всего уравнения и использования граничных условий. Для доказательства достаточного условия строится подходящая задача Коши (которая всегда разрешима) и анализируется ее решение. Мы имеем дело с общим случаем формальных степенных рядов и не делаем предположений об их сходимости. Основной результат. В работе доказаны необходимые и достаточные условия разрешимости неоднородной задачи Штурма–Лиувилля для общего случая формальных степенных рядов. Как частный случай общего результата, полученный результат остается верен, если заменить формальные степенные ряды функциями. Практическая значимость. Результат может найти применение при построении решений уравнений в частных производных и обыкновенных дифференциальных уравнений в форме формальных степенных рядов. Результат является общим и применим к частным случаям таких рядов, например, к асимптотическим рядам или функциям (сходящимся степенным рядам).

Ключевые слова:

Статьи в номере