Например, Бобцов

ПРОГНОЗИРОВАНИЕ ВЕСЕННЕГО ПОЛОВОДЬЯ РЕК С ИСПОЛЬЗОВАНИЕМ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ

Аннотация:

Предмет исследования. Предложен новый подход к решению задачи прогнозирования наводнений и паводков в населенных пунктах Ненецкого автономного округа с помощью методов машинного обучения. Метод. Прогноз выполнен на основе выборки данных исторических показателей гидрологических постов и погодных условий в ближайших населенных пунктах за несколько лет. Особенность предлагаемого метода заключается в том, что для обучения ансамбля моделей (XGBoost, Random Forest, бэггинг) используются дополнительные данные, предварительно полученные в результате прогноза с использованием модели Хольта–Уинтерса. Основные результаты. Полученные в результате тестирования экспериментальные данные показали эффективность нового подхода. В результате работы алгоритма получен прогноз повышенного уровня воды, выполнено сравнение со значениями исторических данных по рекам Ненецкого автономного округа. Практическая значимость. Применение предлагаемого метода прогнозирования критического уровня воды экономически целесообразно, и может быть использовано как дополнительная мера по профилактике и предотвращению последствий наводнений в отдельных регионах России.

Ключевые слова:

Статьи в номере