Например, Бобцов

Распознавание эмоционального состояния человека на основе сверточной нейронной сети

Аннотация:

Предмет исследования. Предложено новое решение распознавания эмоционального состояния человека (радость, удивление, грусть, гнев, отвращение, страх и нейтральное состояние) по выражению лица. Наряду с традиционной вербальной коммуникацией эмоции играют значительную роль при определении истинных намерений для реализации коммуникативного акта в различных практических сферах деятельности. Существует большое количество моделей и алгоритмов распознавания эмоций человека по классам и их применения для сопровождения коммуникативного акта. Известные модели дают невысокую точность распознавания эмоциональных состояний. Методы. Для классификации выражений лиц построены два классификатора, реализованные в библиотеке Keras: ResNet50, MobileNet, и предложена новая архитектура классификатора сверточной нейронной сети. Обучение классификаторов осуществлено на наборе данных FER 2013. Основные результаты. Сравнение результатов работы выбранных классификаторов показало, что предложенная модель имеет наилучший результат по точности валидации (60,13 %) и размеру (15,49 МБ), при этом функция потерь составляет 0,079 для точности и 2,80 — для валидации. Практическая значимость. Результаты исследования могут быть использованы для распознавания признаков стресса и агрессивного поведения человека в системах обслуживания населения и в сферах, при наличии общения с большим количеством людей.

Ключевые слова:

Статьи в номере