Например, Бобцов

Комплекснозначное разложение матричных данных на принципах квантовой теории

Аннотация:

Предмет исследования. Представлен метод сжатого представления матричных данных на принципах квантовой теории. Данные имеют вид таблицы численных значений набора величин в ряде экспериментов. Метод формализован в виде факторизации данных на основе сингулярного разложения, обобщенного на Quantum-probabilistic SVD: complex-valued factorization of matrix data Научно-технический вестник информационных технологий, механики и оптики, 2022, том 22, № 3 568 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no 3 поле комплексных чисел. Рассмотрена возможность интерпретации разработанного метода в соответствии с принципами квантовой когнитивистики. Метод. В соответствии с квантовой теорией, действительные величины в исходных данных порождаются волновыми функциями в виде комплекснозначных векторов в многомерном гильбертовом пространстве. Волновые функции определяются суперпозициями базисных векторов, представляющими композицию семантических факторов. Базисные вектора рассчитываются с помощью сингулярного разложения матрицы исходных данных, приведенной к амплитудной форме. Комплекснозначные коэффициенты разложения определяются по условию наилучшей аппроксимации исходных данных. Основные результаты. Метод апробирован на случайно сгенерированных матрицах размером от 3 × 3 до 12 × 12 и размерностях сжатого гильбертова пространства от 2 до 4. Наилучшая точность приближения достигается при использовании в качестве элементов разложения нормированных комплекснозначных векторов, выполняющих роль порождающих волновых функций. Полученная точность во всех случаях превосходит точность приближения стандартным методом усеченного сингулярного разложения. Среднее повышение точности на исследованном интервале параметров составило 22 %. Метод допускает когнитивную интерпретацию, совместимую с квантовыми моделями поведения и принятия решений. Практическая значимость. Представленный метод применим в задачах семантического анализа данных, включая задачи обработки естественного языка. В этих приложениях полученный результат может быть использован для повышения точности выделения главных смысловых компонент, совершенствования методов классификации и ранжирования текстовых документов. Возможность когнитивной интерпретации и формализация в форме матричного разложения открывает подходы к дальнейшему использованию моделей квантовой когнитивистики в задачах анализа данных. Ожидается, что встраивание квантовой логики на основе комплекснозначного вероятностного исчисления в алгоритмы машинного обучения и искусственного интеллекта позволит имитировать работу естественных когнитивных систем.

Ключевые слова:

Статьи в номере