Например, Бобцов

ОБЗОР МЕТОДОВ ОПТИМИЗАЦИИ БИНАРНЫХ НЕЙРОННЫХ СЕТЕЙ

Аннотация:

Развертывание моделей сверточных нейронных сетей (СНС) во встраиваемых системах осложнено множеством проблем, связанных с вычислительной мощностью, энергопотреблением и объемом памяти. Для решения этих проблем в 2016 г. создан многообещающий тип нейронных сетей, использующих 1-битную активацию и веса, — бинарные нейронные сети (БНС). Такие сети потребляют меньше энергии и вычислительных мощностей, так как заменяют сложную операцию тяжелой свертки простыми побитовыми операциями. Однако квантование с 32-разрядной плавающей запятой до 1 бита приводит к потере точности и снижению производительности, особенно при больших наборах данных. Представлен обзор ключевых методов оптимизации, которые повлияли на производительность БНС и привели к повышению репрезентативности их моделей, также представлены обзор способов применения БНС в задачах обнаружения объектов и сравнительный анализ их производительности с реальным значением.

Ключевые слова:

Статьи в номере