BIFURCATION CONDITION FOR OPTIMAL SETS OF THE AVERAGE DISTANCE FUNCTIONAL
Аннотация:
Consider the quasi-static irreversible evolution of a connected network, which minimizes the average distance functional. We look for conditions forcing a bifurcation, thus changing the topology. We would give here a sufficient conditions. Then we will give an explicit example of sets satisfying the bifurcation condition, and analyze this special case. Proofs given here will be somewhat sketchy, and this work is based on [9], in which more details can be found.
Ключевые слова:
Постоянный URL
Статьи в номере
- NONLINEARITY-DEFECT INTERACTION: SYMMETRY BREAKING BIFURCATION IN A NLS WITH A b′ IMPURITY
- ATTRACTIVE OR REPULSIVE CASIMIR EFFECT AND BOUNDARY CONDITION
- LANDAU-ZENER EFFECT FOR A QUASI-2D PERIODIC SANDWICH
- A NONLOCAL PROBLEM WITH INTEGRAL CONDITIONS FOR HYPERBOLIC EQUATION
- THRESHOLD EIGENFUNCTIONS AND THRESHOLD RESONANCES OF SOME RELATIVISTIC OPERATORS
- ВЛИЯНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА СТРУКТУРУ СЕГНЕТОЭЛЕКТРИЧЕСКИХ ШЕВРОННЫХ СМЕКТИКОВ С∗
- МОДЕЛИРОВАНИЕ ТЕЧЕНИЙ В НАНОКАНАЛАХ МЕТОДОМ МОЛЕКУЛЯРНОЙ ДИНАМИКИ
- МОДЕЛИРОВАНИЕ ОБРАЗОВАНИЯ НАНОЧАСТИЦ ДИОКСИДА ТИТАНА В ПРОТОЧНОМ ПЛАЗМОХИМИЧЕСКОМ РЕАКТОРЕ
- КРИТЕРИЙ ОЦЕНКИ ЭНЕРГЕТИЧЕСКИХ СВОЙСТВ ПОВЕРХНОСТИ
- ФОРМИРОВАНИЕ НАНОЧАСТИЦ Cr2O3 В ГИДРОТЕРМАЛЬНЫХ УСЛОВИЯХ