SPECTRAL AND LUMINESCENT PROPERTIES OF FLUOROPHOSPHATE GLASSES DOPED WITH YTTERBIUM AND ERBIUM
Annotation
Fluorophosphate glasses are among the most promising media for ytterbium erbium lasers. The following advantages of this glasses are low OH-content, simple glass synthesis process and the possibility for a relatively high dope concentration of rare-earth ions (up to 15 wt %). The paper deals with complex investigation of the spectral and luminescent properties of fluorophosphate glasses doped with different concentration of ytterbium and erbium ions. Glass compositions based on Ba(PO3)2-BaF2-СaF2-MgF2-AlF3-SrF2-YF3 with different erbium fluoride concentration (from 1 to 12.5 mol%) were synthesized by conventional high temperature method. Absorption cross-sections and Judd-Ofelt parameters were determined based on the measured absorption spectra data. Erbium ions luminescence was excited by titanium-sapphire laser at 975 nm. Stimulated emission cross section was calculated by McCumber method. Fuchtenbauer-Landenburg formula is used to calculate erbium ions radiation lifetime. Calculated integral values of the absorption cross section are greater than of conventional phosphate glasses and reach abs =1,37×10-18 cm-2 and em =1,39×10-18 cm-2. The maximum value of quantum yield was equal to 85% and was obtained for sample with the erbium concentration of 1×1020 cm-3. Increasing of erbium ion concentration from 1 to 12,9×1020 cm-2 results in reducing of quantum yield by 7%, due to the low content of hydroxyl groups in fluorophosphate glasses. These glasses are a promising material for lasers and amplifiers design operating at 1.5 μm wavelength.
Keywords
Постоянный URL
Articles in current issue
- PHOTONICS AND OPTICAL INFORMATICS IN EUROPE: TRENDS OF 2003–2013
- TWO-DIMENSIONAL LOCALIZATION OF ATOMIC POPULATIONS IN FOUR-LEVEL QUANTUM SYSTEMS
- THE RECURRENT ALGORITHM FOR INTERFEROMETRIC SIGNALS PROCESSING BASED ON MULTI-CLOUD PREDICTION MODEL
- INVESTIGATION OF BIOLOGICAL OBJECTS IN OPTICAL COHERENCE TOMOGRAPHY WITH DATA PROCESSING BY SEQUENTIAL MONTE CARLO METHOD
- AUTOMATIC CALIBRATION METHOD FOR STEREOSCOPIC SYSTEM
- METHOD OF IMAGE QUALITY ENHANCEMENT FOR SPACE OBJECTS
- ROBUST REGULATION FOR SYSTEMS WITH POLYNOMIAL NONLINEARITY APPLIED TO RAPID THERMAL PROCESSES
- NANOSTRUCTURING AS A WAY FOR THERMOELECTRIC EFFICIENCY IMPROVEMENT
- SPECTRAL AND LUMINESCENT PROPERTIES OF CHROMIUM IONS IN FORSTERITE-LIKE NANO-GLASS CERAMICS
- PARAMETERS OPTIMIZATION OF METAL-DIELECTRIC NANOSTRUCTURES FOR SENSOR APPLICATIONS
- HLD-METHODOLOGY APPLICATION FOR RECONFIGURABLE EMBEDDED SYSTEMS DESIGN
- METHOD OF HIGH-QUALITY SPEECH SYNTHESIS WITH A SMALL DATABASE USAGE
- DETECTION OF CLIPPED FRAGMENTS IN ACOUSTIC SIGNALS
- TWO-LEVEL HIERARCHICAL COORDINATION QUEUING METHOD FOR TELECOMMUNICATION NETWORK NODES
- AN APPROACH FOR CLONE DETECTION IN DOCUMENTATION REUSE
- EFFECTIVENESS ASSESSMENT METHODOLOGY OF INFORMATION SECURITY MANAGEMENT SYSTEM THROUGH THE SYSTEM RESPONSE TIME TO INFORMATION SECURITY INCIDENTS
- MOVING PERSON IDENTIFICATION IN VIDEO SURVEILLANCE SYSTEMS
- MULTISENSOR SYSTEM APPLICATION FOR PREPARATIONS BITTERNESS EVALUATION IN TRADITIONAL CHINESE MEDICINE
- ACCURACY EVALUATION FOR THE NON-CONTACT DEFECT AREA MEASUREMENT AT THE COMPLEX-SHAPE SURFACES UNDER VIDEOENDOSCOPIC CONTROL
- COMPARATIVE ANALYSIS OF ENERGY ACCUMULATION SYSTEMS AND DETERMINATION OF OPTIMAL APPLICATION AREAS FOR MODERN SUPER FLYWHEELS
- MULTI-GRID METHOD OF CONVERGENCE SPEEDING-UP FOR THE SOLUTION OF GAS DYNAMICS PROBLEMS ON UNSTRUCTURED MESHES
- EXTENSION OF TENSOR PRODUCT FOR OPERATORS ON THE DIRAC OPERATOR EXAMPLE
- MOLECULAR DYNAMIC SIMULATION OF PEPTIDE POLYELECTROLYTES
- IDENTIFICATION OF NONLINEAR MODEL PARAMETERS FOR RAPID THERMAL PROCESSES