DETECTION OF CLIPPED FRAGMENTS IN ACOUSTIC SIGNALS
Annotation
The paper deals with investigation of the method for detecting clipped fragments in acoustic signals with better characteristics as compared with the other known methods. This method is based on the histogram construction for the analyzed signal amplitudes and calculating the distances between the local peaks of the histogram on its tails and in the central part. The difference between histograms of non-clipped and clipped signals is that the histogram of a non-clipped signal has smoothly decaying tails while the histogram of a clipped signal has visible and easily detectable outbursts on its tails. The value of these outbursts and consequently the quality of detection of clipped fragments depends on the parameters of the method under investigation. The main aim of this paper is finding the optimal parameters of the method. Characteristics of the method are studied in detail by mathematical modeling; density functions of target values for different lengths of a studied signal frame and the number of histogram counts and levels of clipping of acoustic signals are built. It is shown that good separation between clipped and non-clipped signal fragments of acoustic signals can be achieved for the frame length between 6000 and 8000 samples and the number of histogram bins between 200 and 300. In this case the threshold level for the best separation can vary between 0.45–0.55. Examples of clipping detector operation based on the proposed method and on real acoustic signals are shown for the case of different clipping levels
Keywords
Постоянный URL
Articles in current issue
- PHOTONICS AND OPTICAL INFORMATICS IN EUROPE: TRENDS OF 2003–2013
- TWO-DIMENSIONAL LOCALIZATION OF ATOMIC POPULATIONS IN FOUR-LEVEL QUANTUM SYSTEMS
- THE RECURRENT ALGORITHM FOR INTERFEROMETRIC SIGNALS PROCESSING BASED ON MULTI-CLOUD PREDICTION MODEL
- INVESTIGATION OF BIOLOGICAL OBJECTS IN OPTICAL COHERENCE TOMOGRAPHY WITH DATA PROCESSING BY SEQUENTIAL MONTE CARLO METHOD
- AUTOMATIC CALIBRATION METHOD FOR STEREOSCOPIC SYSTEM
- METHOD OF IMAGE QUALITY ENHANCEMENT FOR SPACE OBJECTS
- ROBUST REGULATION FOR SYSTEMS WITH POLYNOMIAL NONLINEARITY APPLIED TO RAPID THERMAL PROCESSES
- NANOSTRUCTURING AS A WAY FOR THERMOELECTRIC EFFICIENCY IMPROVEMENT
- SPECTRAL AND LUMINESCENT PROPERTIES OF CHROMIUM IONS IN FORSTERITE-LIKE NANO-GLASS CERAMICS
- SPECTRAL AND LUMINESCENT PROPERTIES OF FLUOROPHOSPHATE GLASSES DOPED WITH YTTERBIUM AND ERBIUM
- PARAMETERS OPTIMIZATION OF METAL-DIELECTRIC NANOSTRUCTURES FOR SENSOR APPLICATIONS
- HLD-METHODOLOGY APPLICATION FOR RECONFIGURABLE EMBEDDED SYSTEMS DESIGN
- METHOD OF HIGH-QUALITY SPEECH SYNTHESIS WITH A SMALL DATABASE USAGE
- TWO-LEVEL HIERARCHICAL COORDINATION QUEUING METHOD FOR TELECOMMUNICATION NETWORK NODES
- AN APPROACH FOR CLONE DETECTION IN DOCUMENTATION REUSE
- EFFECTIVENESS ASSESSMENT METHODOLOGY OF INFORMATION SECURITY MANAGEMENT SYSTEM THROUGH THE SYSTEM RESPONSE TIME TO INFORMATION SECURITY INCIDENTS
- MOVING PERSON IDENTIFICATION IN VIDEO SURVEILLANCE SYSTEMS
- MULTISENSOR SYSTEM APPLICATION FOR PREPARATIONS BITTERNESS EVALUATION IN TRADITIONAL CHINESE MEDICINE
- ACCURACY EVALUATION FOR THE NON-CONTACT DEFECT AREA MEASUREMENT AT THE COMPLEX-SHAPE SURFACES UNDER VIDEOENDOSCOPIC CONTROL
- COMPARATIVE ANALYSIS OF ENERGY ACCUMULATION SYSTEMS AND DETERMINATION OF OPTIMAL APPLICATION AREAS FOR MODERN SUPER FLYWHEELS
- MULTI-GRID METHOD OF CONVERGENCE SPEEDING-UP FOR THE SOLUTION OF GAS DYNAMICS PROBLEMS ON UNSTRUCTURED MESHES
- EXTENSION OF TENSOR PRODUCT FOR OPERATORS ON THE DIRAC OPERATOR EXAMPLE
- MOLECULAR DYNAMIC SIMULATION OF PEPTIDE POLYELECTROLYTES
- IDENTIFICATION OF NONLINEAR MODEL PARAMETERS FOR RAPID THERMAL PROCESSES