For example,Бобцов

ALGORITHM OF MULTIHARMONIC DISTURBANCE COMPENSATION IN LINEAR SYSTEMS WITH ARBITRARY DELAY: INTERNAL MODEL APPROACH

Annotation

Subject of Research. The problem of multiharmonic disturbance compensation for the class of linear time-invariant plants with known parameters and delay is considered.  Method. The disturbance is presented as unmeasurable output of linear autonomous model (exosystem) with known order and unknown parameters. The problem is resolved with the use of parametrized representation of disturbance designed by means of exosystem state observer and predictor of this state that finally enables applying certainty equivalence principle. In order to remove undesirable influence of delay a modified adaptation algorithm is created. The algorithm is based on augmentation of the plant state vector and generates advanced adjustable parameters for control. As distinct from widespread approaches, the proposed algorithm does not require identification of disturbance parameters and gives the possibility to remove such restrictions as adaptation gain margin and time delay margin. Main Results. Simulation results obtained in MATLAB/Simulink environment are presented to demonstrate the performance of proposed approach. Results illustrate the boundness of all signals in the closed-loop system and complete compensation of harmonic signal. It is shown that the proposed idea makes it possible to increase the adaptation gain for different delays without system stability loss. Practical Relevance. The algorithm of adaptive compensation  is recommended for the use in such problems as: the problem of control for active vibration protection devices wherein several dominating harmonics can be taken from the spectrum of vibration signal; the problems of control of robotics systems with periodical behavior; the problems of ship roll compensation; the problems of space plants control in the presence of uncontrollable rotation.

Keywords

Articles in current issue