For example,Бобцов

EXTRACTION OF MATERIAL PARAMETERS FOR PLASMON MULTILAYER FROM REFLECTION AND TRANSMISSION COEFFICIENTS

Annotation

The paper deals with acquisition and analysis of permittivity and permeability for a finite sample made of multi-layered metal-dielectric nanostructure –plasmon multilayer referred to a class of electromagnetic metamaterials. Metamaterials are artificial structures, periodical as a rule, with characteristic unit cell sizes much smaller than the wavelength in vacuum, having unusual properties not met in nature. For example, metamaterials open the way to fabrication of optical materials with permeability substantially differing from unity - the task considered as unrealizable for a long time. The classical Nicolson-Ross-Weir method has been applied for extraction of material parameters describing an electromagnetic behavior of the plasmon multilayer from reflection and transmission coefficients. Strong resonance-type magnetic activity in the optical frequency domain is observed in the metamaterial under consideration. Magnetism appears due to strong spatial dispersion inherent to the plasmon multilayers. Position of the permeability resonance is located exactly in the epsilon-near-zero region. It is shown how the resonance can be repositioned by means of the filling factor changing. Observed magnetic activity reaches the steady state with multilayer thickness equal to a few dozens of layers. Plasmon multilayers are sug-gested as robust and effective optical materials with a strong magnetic response in the whole optical domain.

Keywords

Articles in current issue