For example,Бобцов

EFFECT OF FERRITE NANOCRYSTALS ON RAMAN SPECTRA OF POTASSIUM-ALUMINABORATE GLASS

Annotation

Subject of Research. The paper presents research results of potassium-aluminaborate glass with ferrite nanocrystals. The formation process of the ferrite nanocrystals in potassium-aluminaborate glass host is studied. The spectral characteristics of Raman scattering are analyzed. Method.The glasses under study are synthesized by the method of batch melting in the crucible. Potassium-aluminaborate glass system (K2O-Al2O3-B2O3) and such dopants as 3 wt% Fe2O3 (composition 1), 3 wt% Fe2O3 and 2 wt% MnO (composition 2) are used. The glass synthesis temperature is 1300 °C. The ferrite crystal phase nucleation occurred during heat treatment at 560 °C for 3 hours. The Raman spectra are excited by radiation of a polarized helium-neon laser (λ=633 nm) with 50 Wt power and are recorded by a single pass Renishaw spectrometer. Stimulating pulses are focused onto the sample by Leica optical microscope. Main Results. It is shown that after glass isothermal treatment at the temperature equal to 560 °C for 3 hours the formation of nanocrystals of magnetite and manganese ferrite occurs. It is connected with the appearance in the Raman spectra of additional bands near 350, 680 cm-1 and 630 cm-1, which corresponds to the modes Eg, A1g of FeFe2O4 and A1g of MnFe2O4. Practical Relevance.The activated glasses under research could be applied as the sensitive media for the design of the optical isolators based on the Faraday effect and current sensors.

Keywords

Articles in current issue