For example,Бобцов

ON FLAME FRONT PROPAGATION RATE IN CYLINDRICAL TUBE WITH MULTIPOINT IGNITION BY STREAMER MICROWAVE DISCHARGE

Annotation

 We study the propagation rate of the combustion front in a quartz cylindrical tube filled with a mixture of propane and air with volumetric ignition by a streamer discharge. The streamer discharge is ignited on the inner walls of the tube by quasioptical microwave radiation with an initiator placed in the tube. The measurements are performed for different lengths of the streamer discharge. The carried out studies showed that the streamer discharge, that creates a multitude of ignition points, provides practically instantaneous ignition of the mixture in the entire volume, where the streamers reach. The resulting combustion front has a speed typical for the deflagration to detonation transition. Measurements have shown that the front speed rises with discharge length increase, but it is nonlinear. The dependence of the speed on the excess fuel coefficient is also ambiguous. The results can be applied in the development of multipont volumetric ignition systems in internal combustion engines, gas turbine engines, low-emission combustion chambers, the combustion organization in a supersonic flow, and the combustion chambers detonation engines.

Keywords

Articles in current issue