For example,Бобцов

DYNAMIC PARAMETERS ESTIMATION OF INTERFEROMETRIC SIGNALS BASED ON SEQUENTIAL MONTE CARLO METHOD

Annotation

The paper deals with sequential Monte Carlo method applied to problem of interferometric signals parameters estimation. The method is based on the statistical approximation of the posterior probability density distribution of parameters. Detailed description of the algorithm is given. The possibility of using the residual minimum between prediction and observation as a criterion for the selection of multitude elements generated at each algorithm step is shown. Analysis of input parameters influence on performance of the algorithm has been conducted. It was found that the standard deviation of the amplitude estimation error for typical signals is about 10% of the maximum amplitude value. The phase estimation error was shown to have a normal distribution. Analysis of the algorithm characteristics depending on input parameters is done. In particular, the influence analysis for a number of selected vectors of parameters on evaluation results is carried out. On the basis of simulation results for the considered class of signals, it is recommended to select 30% of the generated vectors number. The increase of the generated vectors number over 150 does not give significant improvement of the obtained estimates quality. The sequential Monte Carlo method is recommended for usage in dynamic processing of interferometric signals for the cases when high immunity is required to non-linear changes of signal parameters and influence of random noise.

Читать текст статьи

Keywords

Articles in current issue