Например, Бобцов

АНАЛИЗ ВЫЧИСЛИТЕЛЬНОЙ СЛОЖНОСТИ РЕКУРРЕНТНЫХ АЛГОРИТМОВ ОБРАБОТКИ ДАННЫХ В ОПТИЧЕСКОЙ КОГЕРЕНТНОЙ ТОМОГРАФИИ

Аннотация:

Рассмотрены основные принципы представления сигналов в оптической когерентной томографии с использованием формализма теории динамических систем; проведен сравнительный анализ вычислительной сложности алгоритмов динамического оценивания параметров сигналов в оптической когерентной томографии, таких как расширенный фильтр Калмана и последовательный метод Монте-Карло. Показано, что вычислительная сложность обработки одного отсчета сигнала при помощи расширенного фильтра Калмана полиномиально возрастает в зависимости от размера вектора параметров и вектора наблюдения, а сложность обработки отсчета сигнала последовательным методом Монте-Карло линейно зависит как от размеров вектора параметров и вектора наблюдения, так и от количества генерируемых случайных векторов. Приведены экспериментальные результаты оценивания времени обработки тестового сигнала при использовании каждого из алгоритмов. Показано, что время обработки сигнала, содержащего 500 дискретных отсчетов, при помощи расширенного фильтра Калмана в случае простейшей модели скалярного сигнала составляет примерно 0,1 с и возрастает при усложнении модели в несколько раз. Время обработки аналогичного сигнала при помощи последовательного метода Монте-Карло с использованием аналогичной простейшей модели и при фиксированном количестве генерируемых векторов составляет 0,7 с и при усложнении модели возрастает незначительно, примерно в 1,5 раза. Полученные результаты могут быть использованы при оценке ожидаемого времени обработки данных с помощью рекуррентных алгоритмов динамического оценивания параметров в системах оптической когерентной томографии.

Ключевые слова:

Статьи в номере