In Memoriam: Alexander Ivanovskii, innovative researcher and science manager in computational materials science of advanced inorganic materials
Аннотация:
The paper is written to pay a tribute to Prof. Alexander Leonidovich Ivanovskii, Head of the Quantum Chemistry and Spectroscopy Laboratory at the Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences (RAS), and is devoted to recalling the most significant landmarks in his scientific career. A broad-minded man of great erudition, A. L. Ivanovskii made invaluable contributions in the field of computational materials science — a new field of research covering computational modeling for properties of existing substances and for compounds yet to be synthesized, including nanostructured materials. Under his leadership, a group of young, talented researchers have grown to become specialists in the electronic structure simulation and computational modeling to predict the properties of solids, which formed a unique school of thought in the field of quantum chemistry and spectroscopy research in the Urals.
Ключевые слова:
Постоянный URL
Статьи в номере
- Scientific activities of Professor A.L. Ivanovskii in bibliometric indeces
- Chlorgraphynes: formation path, structure and electronic properties
- Ab-initio study of Re and Ru effect on stability of TCP nanoparticles in Ni-based superalloys
- Electronic structure and stabilization of C60 fullerene encapsulating actinide atom
- Boron-doped anatase: electronic band structure, boron atom locations and magnetic state
- Electronic properties of MoS2 monolayer and related structures
- Cubic ordered modification of titanium monoxide with structural vacancies on metal and nonmetal sublattices: electronic structure and stability
- Relations between activation energies for nucleation and of growth of crystals
- Synthesis and photocatalytic activity of quasi-one-dimensional (1-D) solid solutions Ti1-xMxO2-2x/2 (M(III)= Fe(III), Ce(III), Er(III), Tb(III), Eu(III), Nd(III) and Sm(III), 0≤x≤0.1)
- Effect of high pressures and high temperatures on structural and magnetic characteristics of nanostructured solid solutions Zn1-xFexO
- Rhenium carbides prepared by thermobaric treatment of nanosized precursors
- A facile route of coupling of ZnO nanorods by CdS nanoparticles using chemical bath deposition
- Synthesis and study of nanosized biomaterials based on hydroxyapatite
- Adsorption capacity of water-oxidized lanthanum-doped aluminum alloy powder
- Introduction of scandium, zirconium and hafnium into aluminum alloys. Dispersion hardening of intermetallic compounds with nanodimensional particles