Electronic structure and stabilization of C60 fullerene encapsulating actinide atom
Аннотация:
The geometry optimization of the neutral molecules An@C60 (An = Th – Md) was carried out using the DFT based Dmol3 method. In order to perform calculations for these complexes’ electronic structures, the fully relativistic discrete variational method (RDV) was used. Two types of stable position of metal atom inside the C60 cage were obtained. The most stable non-central positions are favored over the position of actinide in the fullerene center for all An@C60 complexes. Systems containing light actinides have considerable energetic stability, which is noticeably greater than that of corresponding exohedral and “networked” complexes. The 5f-orbitals’ contribution to chemical bonding was found to be noticeably less than that of the 6d-states, even for the complexes at the beginning of An@C60 row. The effective charges on the actinide atoms were calculated using integral scheme incorporated in RDV and Hirshfeld procedure of DMol3 code.
Ключевые слова:
Постоянный URL
Статьи в номере
- In Memoriam: Alexander Ivanovskii, innovative researcher and science manager in computational materials science of advanced inorganic materials
- Scientific activities of Professor A.L. Ivanovskii in bibliometric indeces
- Chlorgraphynes: formation path, structure and electronic properties
- Ab-initio study of Re and Ru effect on stability of TCP nanoparticles in Ni-based superalloys
- Boron-doped anatase: electronic band structure, boron atom locations and magnetic state
- Electronic properties of MoS2 monolayer and related structures
- Cubic ordered modification of titanium monoxide with structural vacancies on metal and nonmetal sublattices: electronic structure and stability
- Relations between activation energies for nucleation and of growth of crystals
- Synthesis and photocatalytic activity of quasi-one-dimensional (1-D) solid solutions Ti1-xMxO2-2x/2 (M(III)= Fe(III), Ce(III), Er(III), Tb(III), Eu(III), Nd(III) and Sm(III), 0≤x≤0.1)
- Effect of high pressures and high temperatures on structural and magnetic characteristics of nanostructured solid solutions Zn1-xFexO
- Rhenium carbides prepared by thermobaric treatment of nanosized precursors
- A facile route of coupling of ZnO nanorods by CdS nanoparticles using chemical bath deposition
- Synthesis and study of nanosized biomaterials based on hydroxyapatite
- Adsorption capacity of water-oxidized lanthanum-doped aluminum alloy powder
- Introduction of scandium, zirconium and hafnium into aluminum alloys. Dispersion hardening of intermetallic compounds with nanodimensional particles