Например, Бобцов

АВТОМАТИЧЕСКАЯ СУММАРИЗАЦИЯ ВЕБ-ФОРУМОВ КАК ИСТОЧНИКОВ ПРОФЕССИОНАЛЬНО ЗНАЧИМОЙ ИНФОРМАЦИИ

Аннотация:

 Предмет исследования. Конкурентным преимуществом современного специалиста является максимально широкий охват источников информации, полезных с точки зрения получения и освоения актуальной профессионально значимой информации. Среди таких источников значительное место занимают профессиональные веб-форумы. В статье рассматривается задача автоматической суммаризации текста форума, т.е. выделения тех его фрагментов, которые содержат профессионально значимую информацию. Метод. Исследование строится на базе статистического анализа текстов форумов посредством машинного обучения.Для исследований отобраны шесть веб-форумов, тематикой которых являются аспекты технологий различных предметных областей. Разметка форумов проводилась экспертным путем. С использованием различных методов машинного обучения построены модели, отражающие функциональную связь между оцениваемыми характеристиками качества извлечения профессионально значимой информации и признаками постов. Для оценки качества моделей использованы кумулятивная метрика NDCG и ее дисперсия. Основные результаты. Показано, что в оценке эффективности извлечения профессионально значимой информации важную роль играет контекст запроса. Отобраны характерные для извлечения профессионально значимой информацииконтексты запросов, отражающие различные трактовки информационной потребности пользователей, обозначенные терминами  релевантность  и информативность. Построены шкалы для их оценок, соответствующие общемировым подходам. Экспериментально подтверждено, что результаты суммаризации форумов, выполняемой экспертами вручную, существенно зависят от контекста запроса. Показано, что в общей оценке эффективности извлечения профессионально значимой информации релевантность достаточно хорошо описывается линейной комбинацией признаков, а для оценки информативности уже требуется их нелинейная комбинация. При этом при оценке релевантности ведущую роль играют признаки, связанные с ключевыми словами, а при оценке информативности на первый план выступают характеристики текста поста в целом, а также признаки, связанные со структурой треда как текста и как социального графа. Показано, что эффективность извлечения информативных постов слабо зависит от способа задания ключевых слов, в то время как для извлечения релевантных постов такая зависимость существенна. Выявлен способ выделения ключевых слов, наиболее эффективный для реальных приложений. Показано, что при выделении релевантных постов линейные методы выигрывают в эффективности по сравнению с нелинейными, а модель LDA занимает промежуточное положение; в то же время при выделении информативных постов линейные и нелинейные методы идентичны по эффективности, а модель LDA значительно уступает им обоим. Предложена содержательная модель, позволяющая объяснить полученные результаты. Практическая значимость. Полученные результаты могут служить основой для построения и новых и адекватного применения существующих алгоритмов суммаризации веб-форумов, что позволит существенно сократить временные и ресурсные затраты пользователя на получение и изучение максимально свежей профессионально значимой информации.

Ключевые слова:

Статьи в номере