Например, Бобцов

УСТОЙЧИВОСТЬ ЖЕЛАЕМОГО СТАЦИОНАРНОГО РЕЖИМА ЗАМКНУТЫХ СИСТЕМ С ПЕРИОДИЧЕСКИМ ИЗМЕНЕНИЕМ СТРУКТУРЫ

Аннотация:

Рассматривается замкнутая линейная автоматическая система, структура которой периодически изменяется с достаточно высокой частотой. Расчет системы целесообразно производить по предельной непрерывной модели, не учитывающей пульсации токов и напряжений реальной системы. Дискретный характер управления может вызвать в реальной системе негативные явления, например автоколебания, искажающие желаемый стационарный режим, имеющий частоту пульсаций выходного сигнала, равную частоте переключений структуры системы. Причиной их обычно оказывается нарушение условий устойчивости желаемого режима. С учетом разных вариантов математического описания силовой части системы внутри периодов коммутации получены ее разностное уравнение и разностное уравнение интегрального регулятора. Для заданного соотношения частей периода коммутации определены стационарный вектор фазовых координат системы и матрица линеаризованного разностного уравнения возмущенного движения. Расположение ее собственных значений внутри круга единичного радиуса с точностью до граничного случая гарантирует асимптотическую устойчивость стационарного режима. С использованием этой матрицы в случае устойчивости желаемого стационарного режима можно построить квадратичную функцию Ляпунова, позволяющую гарантированно выделить хотя бы часть области устойчивости. Приведен пример практического применения полученных результатов к стабилизатору напряжения с параметрическим управлением. Исследование устойчивости его желаемого стационарного режима, выполненное методом математического моделирования в системе MatLab, подтвердило актуальность задачи и корректность ее решения.

Ключевые слова:

Статьи в номере