Например, Бобцов

Исследование напряженных состояний конструкций в процессе ползучести с целью оценки наибольшего напряжения

Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств»

№ 2, 2014

УДК 641.528
Исследование напряженных состояний конструкций в процессе ползучести с целью оценки наибольшего напряжения

Федорова Л.А., канд. техн. наук, проф. Малявко Д.П., Елисеев А.М. Elianto992@gmail.com
Университет ИТМО Институт холода и биотехнологий 921002, Санкт-Петербург, ул. Ломоносова, 9
Представленные решения дают анализ напряженного состояния рассмотренных конструкций, согласно которому определяются максимальные напряжения в материале конструкций для n=1 (состояние линейной упругости) и для n=∞ (решение в случае идеальной пластичности). Все решения приведены для различных геометрических параметров конструкций, различных граничных условий и нескольких значений m (m=1/n). результаты вычислений показаны графически. В соответствии с графиками определяются значения относительного коэффициента концентрации напряжения Fm. Если коэффициент Fm известен, то максимальные напряжения в конструкции в состоянии ползучести нетрудно оценить (на основе линейно-упругого анализа) в зависимости от нагрузки и геометрических характеристик этой конструкции.
Показано, что если распределение напряжений известно для случая линейной упругости (n=1), то скорость изменения напряжений (и, в особенности, максимального напряжения) в зависимости от n можно определить, по существу, подобно решению задачи о линейно-упругих температурных напряжениях, так как «температурные» деформации выражаются в большей степени в изменении формы, чем в изменении объема.
Ключевые слова: ползучесть, изгибающий момент, радиальное и окружное напряжения, деформация, граничное условие.
Investigation of stress state for estimating the greatest stress in structures
subject to creep
The solutions to be represented give analysis of stress state of the structures considered. According to this analysis the greatest stresses in the structures for n=1 (linear-elastic structures) and n=∞ (the perfectly plastic solution) are determined. All the solutions are given for different parameters of the structures, different boundary conditions and several values of m (m=1/n). The results are shown graphically. According to the graphs relative stress concentration factor Fm can be determined. As Fm is known, the greatest stress in a structure subject to creep may be estimated without too much difficulty (by linear-elastic analysis) in terms of the applied load and the geometrical parameters of the structure.
It is shown, that if the stress distribution is known in the linear case (n=1), the rate of change of the stresses (and in particular of the greatest stress) with n may be determined from, essentially, a linear-elastic thermal stress problem as the “thermal” strains consist of changes in shape rather than changes in volume.
Keywords: creep, bending moment, redial and circumferential stresses, strain, boundary condition.

The structures considered [1] are shown schematically in Table 1.
All the usual assumption of linear-elastic small deflection theory are used [5] ; thus we learn nothing, for example, about local stress concentration effects in the regions where plates

Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств»

№ 2, 2014

join thicker plates (structure E) or rigid foundations (structure D). Nor do we learn anything about plates with membrane action.
Thus while it may seen paradoxical that acute, local, stress concentration effects have been ignored, it seems clear that the study, in so far as it leads to empirical general conclusions, may be of some use in tackling problems of local stress concentration factors.
In Fig. 1 the relative stress concentration factor Fm [1] is plotted against the material parameter m, which is the reciprocal of the exponent n [1]:

The factor Fm is defined as on the following equation [1]:

But with an obvious change of subscript.

For most of the structures solutions were obtained, in addition to those for n=1 and n=∞

(m=1 and m=0, uspectively) for m=0.1; 0.2; 0.4; 0.6; and 0.8

Table 1 gives for each structure the value of the greatest stress,

in terms of the load

and geometrical parameters for the case n=1. Use of this expression in conjunction with the

appropriate graph in Fig. 1 gives the value of for any load and value of the exponent n.

Further details of the methods of solution for the various structures are represented (they

were not given in paper [1] because their inclusion would made it too long)

Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств»

№ 2, 2014

Table 1.

Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств»

№ 2, 2014

Fig.1 Results for structures shown in Table 1

Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств»

№ 2, 2014

Details of the various solutions.
A. I – section in pure bending.
This is a very simple problem. By symmetry the neutral axis is at the centre of the section. As “plane sections remain plane” it is a straightforward matter to express the strain rate at any distance y from the neutral axis in terms of y, the rate of change of curvature of the section, and the material constants [7]. Appropriate integration gives the bending moment, and a little algebra puts the results in the desired form. B. Uniformly loaded beam with clamped ends.
The origin was taken at the centre, and the ends of the beam were regarded as “floating boundaries”.
By statics the bending moment is of the form

The rate of change of curvature, is related to the banding moment by a law [3]
In which D depends on the cross-section shape and size and the material constant B. Thus for any finite value of n, may be determined as a function of x. Integration of with respect to x gives the rate of change of slope. Which is zero by symmetry at x=0. Integrating graphically to x=l for which

Gives the value of x at the end of the beam: this is used in the first equation to give the fixed-end moment M, which is readily expressed in terms of the total distributed load and the length of the beam. For the case n→∞ conventional perfectly plastic analysis is used. Use of the results of A, above, enables the results to be presented in the form of Fig. 1.
C. Rotating parallel sided disc.
The equilibrium equation at radius r is

Where and are radial and circumferential stress, respectively,

And ρ and ω as defined in Fig. 1. The strain rate compatibility equation is

Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств»

№ 2, 2014

where and are the rates of change of strain in the radial and circumferential directions, respectively. The biaxial stress-strain rate law is [13]

where
To solve the problem for a disc with no central hole and supporting, say, no edge mass we must solve equations (1) – (6) simultaneously, subject to the boundary conditions
the simplest way of solving the equations seems to be to change the independent variable by making the substitution
Equations (1) and (3) become, respectively:

Differentiating equation (4) with respect to x, substituting for from equation (11) and using equations (4) and (5) we have:

where, as before, m=1/n.

Equations (12) and (10) make it possible to use a Runge - Kutta method to “march out”

values of and for increasing x, if the value of

is known at x=0. We do not

know the values of

at the origin, but we are free to assign a value, say, to them

and apply a scale factor to all the stresses later on.

Equation (10) is determinate at x=0, but using L`Hopital`s rule we find

Simultaneous solution of equations (12) and (13) at x=0 gives the following starting derivatives at x=0

Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств»

№ 2, 2014

Fig. 2 shows the solutions, obtained by computer, for m=0, m=0.4 and m=1. It is easy to
show that for m=1 and are independent of x. The radial stress becomes zero at =16/7; thus by equation (9), substituting for α:

It is readily checked that has a maximum at r=0.

For m=0,

so far m=0,

case, of course, is constant over the whole disc.

. In this

For discs supporting edge mass the boundary conditions are different. If the total mass, representing turbine blades, etc., is equal to β times the mass of the disc itself, and the is no
circumferential cohesion in this mass, it is easily shown that at the rim, radius a,

A point such as A, Fig. 2, may represent the radial stress condition at the edge of the hole. Let the coordinates of A be

From equations (2) and (9):

Combining equations (15) and (16) and substituting

we have

Thus a line radiating from the orogin as shown in Fig. 2 intersects the graphs of representing the edge of the plate for the
same value of the parameter β.

Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств»

№ 2, 2014

D. Uniformly loaded circular plate.

Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств»

№ 2, 2014

It should be noted that the solutions to this problem and similar problems presented in [17], sections 7-9, are net exact solutions, as implied in [17], but approximate “energy”
solutions based on the deformed shape of linear-elastic plate [18].
the equilibrium equation at radius r is:

where

are the radial and circumferential bending moment per unit length and

p is the uniformly distributed pressure.

The strain rate compatibility equation is

where

are the rates of change of curvature in the radial and circumferential

directions respectively. Using the “plane sections remain plane” conditions, it is easy to show (in the absence of

membrane effects) that for a plate element of thickness H

where

Equations (17) – (20) are an exact analogue of equations (1) – (5) for the rotating disc. The

quantities Mr, , , correspond to

while p/2 corresponds to α. The boundary

condition

at r=0 also carries through. The equations may thus be solved in the same

manner.

For the simply-supported plate the boundary condition M=0 at the edge corresponds to

the boundary condition for the rotating disc carrying no edge mass. For the clamped plate the

relevant boundary condition at the edge is

or, using equation (20), Mr =

The

solutions (see Fig. 2) have to be marched out further to the point where this condition is

satisfied. In the case n→∞ there is a slight complication in that at the clamped boundary dMr

/dr →∞: this difficulty is easily overcome, however.

The greatest stress is readily found from th greatest value of . Fo the clamped plate,

the greatest stress occurs at the edge, while for the simply-supported plate the greatest stress occurs at the centre – expect for the case n→∞, when the stress is equal to the yield stress

everywhere.

Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств»

№ 2, 2014

E. Symmetrically stretched sheet with hole and ring reinforcement.
The results are taken from [16]. F. Thick – walled tube under internal pressure.
This problem was first solved by Bailey [19]. The analysis is much simplified by the fact
that the strain rate in the axial direction is zero if the ends of the tube are closed. It is readily
shown from the results (which are obtainable in [20]) that

where a and b are the internal and external radii, respectively. When m=0 the expression becomes indeterminate: L`Hospital`s rule gives the perfectly plastic solution

Calculation of dFm / dm at m=1 For any value of n for a given set of external loads we have a set of stresses τ throughout the structure which are in equilibrium with the external loads, a set of strain rates which are compatible and which are related to the stresses by the material law
The stress distribution is identical to that which would be obtained for the same structure made of non-linear elastic material
For the structure made of the analogous elastic material, consider a small change dn in n, and the associated changes in and . Differentiating equation (23 ) with respect to n:
In the special case n=1:

Now represents a compatible strain distribution, and represents a stress distribution

in equilibrium with zero external load. Equation (25) may thus be interpreted: and
changes in strain and stress in an initially unstressed linear-elastic structure (modulus of elasticity = 1/B1) which is subject to a strain distribution (“thermal strain”) of

are .

Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств»

№ 2, 2014

Thus, if the stress distribution is known in the linear case, n=1, the rate of change of the stresses (and in particular of the greatest stress) with n may be determined from, essentially, a linear-elastic thermal stress problem, For n=1, of course,

The result, as far as Fm in concerned, is independent of the magnitude of τ. It is most

convenient to scale the stresses so that in the greatest stress has absolute value unity. Fig. 3

shows a graph of

as a function of τ for this case.

The analysis has been presented in terms of one-dimensional stress. The essential features carry through to triaxial stress systems. It should be noted that the “thermal” strains

consist of changes in shape rather than changes in volume, as in conventional thermal stress

analysis.

References

1. Aret V. A., Eliseev A. M., Fedorova L. A. Interpolation rule for estimating the greatest stress in a structure subject to creep. / Научный журнал НИУ ИТМО. Серия: процессы и аппараты пищевых производств. -№2-2013.-
http://processes.ihbt.ifmo.ru/file/article/7591.pdf 2. Malivin N. N. Applied theory of plasticity and creep. Moscow: “Mashinostroenie”,
1975. 3. Kachanov L. M. Creep theory. Moscow: “Mashinostroenie”, 1973. 4. Mojarovsky N. C. Theory of plasticity and creep in engineering. Kiev: “Vyshaja
shkola”, 1991.
5. Kachanov L. M. Applied theory of plasticity and creep. Moscow: “Mashinostroenie”, 1975.
6. Hoff, N. J. Approximate analysis of structures in the presence of moderately large
creep deformations. Q. Appl. Math. 1954, 12, 49.
7. Gubser, J. L. Sidebottow, O. M. and Shammamy, M. R. Creep torsion in
prismatic bars, joint International Conference on Creep, ASME, ASTM, I. Mech. E., 1963,
Paper 54.
8. Hoff, N. J. Buckling and stability, Wibur Wright Memorial Lecture, J. R. Aero.
Soc., 1954, 58, 1.
9. Jonson, A. E. Creep under complex stress systems at elevated temperature, Proc.
Instn. mech. Engrs 1951, 164, 432.
10. Drucker, D. C. and Shield, R. T. Bounds on minimum weight design, Q. Appl.
Math., 1957, 15, 269.
11. Rabotnov Yu. N. Creep rupture // Proceeding applied mechanics conference.
Stanford University, 1968. P. 342-349.
12. Murakami S., Imazumi T. Mechanical description. // J. mec. theor. et appl. 1982.
Vol. 1 N5. P 743-761. 13. Hayhurt D. R. Creep rupture under multi-axial states of stress. “Journal of the
mechanics and physics of solids.” 1972. V.O. N6. P. 381-390.

Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств»

№ 2, 2014

14. Jonson A. E. Complex-stress creep of metals “Mettalurgical Revions. 1960. V.5.
N20. P. 447-506.
15. Rabotnov Yu. N. Problems of mechanics of deformed solid. Moscow: Nauka,
1991. 16. Fedorova L. A. Disseptation II Inv. N33022, Research Institute “Gidropribor”,
1974.
17. Finnie, I. and Heller, R. W. Creep in engineering materials, 1959 (McGraw-Hill
Book Co. Inc., New York).
18. Malinin, N. N. Continuous creep of round symmetrically loaded plates. Moscow: “Vysshe tekhn. u. trudy”. 1953. 26, 221.
19. Bailey, R. W. The utilization of creep test data in engineering design, Proc. Insin.
mech. Engrs, 1935, 131. 20. Nadai, A. Theory of flow and fracture of solids, Vol. 1, 2nd ed., 1950 (McGraw-Hill
Book Co. Inc., New York).