Например, Бобцов

МОНИТОРИНГ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ С ИСПОЛЬЗОВАНИЕМ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ

Мониторинг чрезвычайных ситуаций с использованием дистанционного зондирования Земли 23
УДК 528.88; 504.064

Е. П. МИНАКОВ, Е. Ф. ЧИЧКОВА
МОНИТОРИНГ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ С ИСПОЛЬЗОВАНИЕМ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ

Определены состав задач, возникающих при чрезвычайных ситуациях, и основные требования к эффективности их решения. Предложена структура автоматизированной системы мониторинга таких ситуаций. Приведены данные мониторинга гидрометеорологической и экологической обстановки Северо-Западного региона России с использованием космических аппаратов дистанционного зондирования Земли и оценена его эффективность.

Ключевые слова: дистанционное зондирование, мониторинг, автоматизированная система, чрезвычайная ситуация, эффективность.

Чрезвычайные ситуации (ЧС) природного и техногенного характера, возникающие в различных регионах России (разливы нефти и нефтепродуктов в акваториях морей, на озерах и реках, загрязнения территориально-природных комплексов, пожары, наводнения, опасные метеорологические явления и т.д.), могут выявляться и контролироваться с использованием различных средств дистанционного зондирования Земли (ДЗЗ), преимущественно космических аппаратов (КА).
Накопленный к настоящему времени опыт позволяет выявить основные требования к решению возникающих в ходе ЧС задач [1]. Обобщенные требования к мониторинговой информации, основанные на анализе данных организаций министерств и ведомств Российской Федерации, представлены в таблице.

№ п/п

Задача

Время решения, ч

1 Определение факта возникновения ЧС:

пожар

24

разрушение

24

химическое заражение

12

затопление

12

2 Оценка масштабов ЧС:

пожар

2—10

разрушение

12—24

химическое заражение

6—24

затопление

6—12

3 Оценка степени разрушения железнодорожных

путей и подвижного состава

1—12

4 Оценка степени разрушения при авариях мор-

ских (речных) судов и загрязнения поверхности

воды и береговой линии

6—8

5 Определение места падения летательных аппа-

ратов

6—8

6 Определение характеристик транспортных ак-

варий

3—6

7 Определение места и размеров зон аварий на

магистральных трубопроводах

6—12

8 Оценка характера и объема разрушений при

авариях на химически опасных объектах

1—12

Оперативность обновления
информации, ч
0,25—2 0,25—2 0,20—1 0,25—1
1—2 3—6 2—6 1—6
0,5—1
3—6
1—3
1—3
1—3
0,5—2

Пространственное разрешение, м
10—20 10
50—100 30—100
100 0,5—10 50—100
10
1—2
10—20
10—20
1—2
1—20
10—20

ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2009. Т. 52, № 4

24 Е. П. Минаков, Е. Ф. Чичкова

№ п/п

Задача

Время решения, ч

9 Определение типа аварийной ситуации, характера и объема разрушений при авариях на радиационно опасных объектах
10 Определение характера и объема разрушений при обрушении зданий
11 Определение зоны разрушения и затопления при гидродинамических авариях
12 Получение данных для расчета характеристик зон экологических бедствий

1—12 6—12 6—12 3—4

Продолжение таблицы

Оперативность обновления
информации, ч

Пространственное разрешение, м

0,5—3 1—3 1—3
2

1—2 1—2 5—10 10—20

Состав задач, указанный в таблице, нельзя считать исчерпывающим, а требования к их решению — окончательными. Тем не менее можно утверждать, что предельным значением для отводимого времени решения задачи является 1 ч, для оперативности обновления информации о ЧС — 0,2 ч. Предельное пространственное разрешение для мониторинговой информации о ЧС составляет 0,5 м.

БПЛА
Вертолетные средства
Авиационные средства

Информационно-измерительная подсистема
Заданный участок земной поверхности

КА ДЗЗ

Телекоммуникационная подсистема
Подсистема дешифровки изображений земной поверхности

Подсистема формирования и выдачи заданий на проведение съемки участков земной
поверхности
Подсистема первичной и тематической
обработки данных ДЗЗ

истема ТелеткеоптлмеоеПлмдкеосоукидмноссиммиткуемсанмтцуиеанимкиоаанкцаницайияй
(подсистема приема данных ДЗЗ с КА)
Подсистема пространственного анализа данных ДЗЗ
средствами ГИС

Подсистема топографического обеспечения
Рис. 1
Такие высокие показатели в настоящее время могут быть обеспечены только путем комплексного, скоординированного по времени и месту, применения КА, авиационных (вертолетных) пилотируемых и беспилотных летательных аппаратов, а также некоторых других средств, что может быть обеспечено только в рамках единой автоматизированной системы мониторинга ЧС (рис. 1, здесь темные стрелки — команды управления, светлые — данные ДЗЗ).
Система мониторинга должна являться информационным инструментом, позволяющим принимать адекватные решения как для государственных органов управления, так и для за-

ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2009. Т. 52, № 4

Мониторинг чрезвычайных ситуаций с использованием дистанционного зондирования Земли 25 интересованных групп пользователей. Создание автоматизированной системы предполагает решение ряда организационных задач, в частности:
— развития информационно-телекоммуникационной среды, адаптированной к особенностям конкретного региона;
— подготовки специалистов по мониторингу окружающей среды средствами ДЗЗ. Одним из перспективных направлений развития информационно-измерительной подсистемы в структуре, представленной на рис. 1, является баллистическое проектирование и развертывание орбитальной группировки КА ДЗЗ для конкретного региона. Например, показатели, приведенные в таблице, могут быть обеспечены для Северо-Западного региона десятью—двенадцатью малыми КА, движущимися по солнечно-синхронным орбитам и оснащенными бортовыми комплексами управления, проектируемыми в Центральном научно-исследовательском и опытноконструкторском институте робототехники и технической кибернетики (ЦНИИ РТК). Повышение эффективности работы данной подсистемы возможно также за счет использования данных ДЗЗ вновь вводимых зарубежных КА с высокими тактико-техническими характеристиками. Указанные на рис. 1 подсистемы, связанные с приемом и первичной тематической обработкой данных ДЗЗ, с их пространственным анализом средствами геоинформационных систем (ГИС), с дешифровкой изображений для территории Северо-Западного региона успешно функционируют в Центре ДЗЗ ЦНИИ РТК. С 2006 г. поводится регулярный космический мониторинг Финского залива по данным КА Terra. В Центре ДЗЗ ведется разработка специального программного обеспечения и методик тематической обработки космической информации. Так, в частности, с целью оценивания антропогенного воздействия на акваторию восточной части Финского залива и Невской губы, вызванного строительством нефтяных терминалов, портовых зон и других гидротехнических объектов, а также проведением работ по намыву территорий Санкт-Петербурга, используются данные ДЗЗ КА Terra и Aqua (радиометр MODIS), которые позволяют определять степень загрязнения поверхностных вод взвешенными веществами, их температурные поля, площадь зон повышенной мутности и цветения воды сине-зелеными водорослями.
1 2 Рис. 2
На рис. 2 на основе анализа данных ДЗЗ, полученных КА Terra 31 июля 2008 г., показаны зоны повышенной мутности в Невской губе и в восточной части Финского залива (1), а также выделена зона цветения воды сине-зелеными водорослями в центральной части Финского залива (2).
Полученные в период 2006—2008 гг. результаты обработки данных ДЗЗ демонстрируют не только значительное ухудшение экологической обстановки, но и большие отклонения в
ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2009. Т. 52, № 4

26 Е. П. Минаков, Е. Ф. Чичкова значениях некоторых из указанных параметров для водных объектов, находящихся в схожих гидрологических условиях относительно фоновых характеристик 2005 г.
В процессе исследований было установлено, что наибольшие отличия между спутниковыми данными и значениями температуры, полученными в ходе натурных измерений, наблюдаются в диапазоне от 0 до 7 °С [2]. Проведенная валидация алгоритма определения температуры поверхностных вод, используемого программным комплексом SeaDAS для информации с КА Aqua и Terra, по данным репрезентативных наблюдений in situ, обеспечила возможность применения этого алгоритма со стандартной погрешностью 1°С в диапазоне температур от 0 до 23°С для восточной части Финского залива и Невской губы.
Помимо этого было проведено оценивание температуры поверхности воды по данным с КА NOAA в синхронное время, коэффициент корреляции для которых и для данных КА Aqua и Terra составил 0,95.
Другим важным результатом проведенных исследований явилась разработка технологии оперативного получения изображений зон повышенной мутности и цветения воды синезелеными водорослями по данным с КА и передачи их по каналам связи в организации, осуществляющие контроль качества вод Финского залива.
Для оценивания ЧС, связанных с погодными явлениями, разработано специализированное программное обеспечение гидрометеорологического назначения, позволяющее определять по спутниковой информации низкого и среднего разрешения очаги гроз, града, шквала и других опасных явлений. На рис. 3 представлены очаги гроз над территорией СевероЗападного региона 15 мая 2007 г., выявленные по данным ДЗЗ КА NOAA.
Очаги гроз
Рис. 3
Основными проблемами мониторинга при использовании такой информации в настоящее время являются сложность прогнозирования развития соответствующих опасных метеорологических явлений и недостаточная оперативность передачи данных ДЗЗ потребителям. Для повышения качества прогноза развития и перемещения опасных погодных явлений, а
ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2009. Т. 52, № 4

Мониторинг чрезвычайных ситуаций с использованием дистанционного зондирования Земли 27
также загрязнений воды должны быть разработаны методики комплексного использования спутниковой информации и данных различных прогностических моделей. Для валидации методик обработки данных ДЗЗ КА требуется проведение ряда „подспутниковых экспериментов“ с широким по тематическому охвату спектром контактных измерений физических параметров компонентов окружающей среды.
Для повышения точности контроля состояния воды и объектов суши требуется спутниковая информация ДЗЗ высокого и среднего пространственного разрешения, которая обрабатывается при помощи соответствующего специализированного программного обеспечения. Основные проблемы в этом случае состоят в высокой себестоимости получения данных требуемого пространственного разрешения, в недостаточной методической разработке обнаружения и анализа зон различных загрязнений на воде и суше, в необходимости валидации и региональной адаптации существующих методик.
Для оценивания эффективности применения КА ДЗЗ были использованы карты космической обстановки и графо-аналитический метод [3, 4]. Полученные результаты показывают, что применение спутникового мониторинга ЧС позволяет повысить вероятность обнаружения зон разлива нефти в любой акватории на поверхности Земли более чем в 1,2 раза, обнаружения нештатной ситуации на контролируемом объекте — в 1,4 раза, выявления таких опасных явлений, как ураганы, тайфуны — в 1,1 раза. При этом соответствующее время обнаружения сокращается в среднем почти в 2 раза. Особо следует отметить, что применение космических средств должно повысить оперативность решения таких задач, как обнаружение очагов возгорания, оценивание ледовой обстановки и некоторых других, в 3—4 раза.

СПИСОК ЛИТЕРАТУРЫ

1. Голованев И. Н. Федеральная система мониторинга объектов и ресурсов. Основы построения и техническая реализация. М.: СИП РИА, 2006. 252 с.

2. Чичкова Е. Ф., Булаев O. A. Спутниковый мониторинг восточной части Финского залива в 2007 году // Сб. тр. IX Междунар. экологического форума „День Балтийского моря“. СПб, 2008. С. 224—225.

3. Минаков Е. П. Карты космической обстановки для оценивания эффективности применения космических аппаратов дистанционного зондирования поверхности Земли // Мат. IV Междунар. конф. „Микротехнологии и новые информационные услуги в авиации и космонавтике“. СПб, 2005. С. 45—49.

4. Булаев О. А., Минаков Е. П., Федоров С. А. Графо-аналитический метод оценивания вероятности группового применения орбитальных средств дистанционного зондирования областей на поверхности Земли // Там же. С. 49—52.

Евгений Петрович Минаков Елена Федоровна Чичкова

Сведения об авторах — д-р техн. наук, профессор; Центральный научно-исследовательский инсти-
тут робототехники и технической кибернетики, Санкт-Петербург; E-mail: minakov@rtc.ru — канд. географических наук, старший научный сотрудник; Центральный научно-исследовательский институт робототехники и технической кибернетики, Санкт-Петербург; E-mail: chichkova@rtc.ru

Рекомендована Ученым советом ВКА им. А. Ф. Можайского

Поступила в редакцию 20.10.08 г.

ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2009. Т. 52, № 4