Например, Бобцов

РАСЧЕТ ПЕРЕКРЕСТНЫХ ПОМЕХ В ЭЛЕКТРОННЫХ МОДУЛЯХ

26 И. А. Конников
УДК 621.382.82.001
И. А. КОННИКОВ
РАСЧЕТ ПЕРЕКРЕСТНЫХ ПОМЕХ В ЭЛЕКТРОННЫХ МОДУЛЯХ
Представлен подход к использованию классических методов радиотехники для моделирования электромагнитного поля в электронных устройствах. Предлагаемый подход может быть использован в САПР при решении проблемы внутренней электромагнитной совместимости электронных модулей, он позволяет снизить объем вычислений по сравнению с методами, основанными на строгом расчете электромагнитного поля.
Ключевые слова: наводки, электромагнитная связь, эквивалентная постоянная распространения.
Введение. Трудоемкость оценки влияния паразитных электромагнитных эффектов (ПЭМЭ) на характеристики современных радиоэлектронных модулей на ранней стадии их проектирования ограничивает размерность задач, решаемых в САПР. Тенденции развития радиоэлектроники обусловливают постоянно возрастающую актуальность разработки и внедрения все более эффективных методов решения этой проблемы.
Помимо использования существующих топологических ограничений и норм проектирования возможны два основных подхода к решению проблемы. Первый, предложенный в статье [1], предполагает экстракцию эквивалентной электрической схемы проектируемого модуля, включающей помимо элементов принципиальной схемы элементы, моделирующие ПЭМЭ. Экстракция проводится в автоматическом режиме. Для оценки влияния ПЭМЭ рассчитываются выходные электрические характеристики. Недостаток такого подхода — высокая размерность решаемой задачи, не соответствующая возможностям современных вычислительных средств.
Второй подход предполагает непосредственный расчет количественных характеристик ПЭМЭ (главным образом — амплитуды наведенной помехи). С целью снижения размерности задачи эквивалентная схема, по которой оцениваются ПЭМЭ, экстрагируется только для коммутационных проводников конструкции устройства. Активные элементы моделируются своими эквивалентными входными и/или выходными сопротивлениями и генераторами сигнала.
В обоих случаях паразитные наводки и задержки традиционно моделируются с помощью схем замещения, включающих частотонезависимые емкости и индуктивности. Однако в этом случае погрешность моделирования ПЭМЭ имеет две составляющие. Во-первых, погрешность, обусловленная использованием при моделировании поля реактивностей, которые рассчитываются через его статическую составляющую, превалирующую в ближней зоне, но быстро убывающую с увеличением расстояния. При моделировании наводок через взаимные емкости и индуктивности (в классической трактовке этих понятий) не учитываются поля излучения и переходной зоны. Это может привести к недопустимо высокой погрешности при проектировании устройств субнаносекундного диапазона, поэтому паразитные емкости и индуктивности целесообразно использовать только для моделирования распространения поля вдоль коммутационных проводников (для расчета времени задержки, волнового сопротивления и т.п.). Для моделирования взаимного влияния проводников следует использовать математические модели, которые учитывают все составляющие поля, в том числе поле излучения. Во-вторых, погрешность, обусловленная пространственной дискретизацией системы с распределенными параметрами, состоящей из объекта-источника и объекта-приемника помехи, а также канала распространения электромагнитной энергии.
В настоящей работе предлагаются математические методы и модели, основанные на прямом использовании методов теории электромагнитного поля, органично учитывающих распре-
ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2012. Т. 55, № 12

Расчет перекрестных помех в электронных модулях

27

деленный характер конструктива. Область корректного использования таких моделей не ограничена ближней зоной и может распространяться на решение проектных задач большой размерности, поскольку предлагаемый подход позволяет максимальным образом использовать аналитические методы, реализуемые заранее при разработке математического обеспечения САПР, в отличие от традиционных методов, основанных на пространственной дискретизации и предполагающих проведение основного, причем гораздо большего, объема вычислений в процессе моделирования.
Основная идея предлагаемого подхода. Для количественной оценки перекрестных помех предлагается использовать электродинамический подход на основе метода эквивалентной постоянной распространения (ЭПР) [2]. При таком подходе значение наводимой ЭДС помехи может быть рассчитано с учетом всех составляющих (а не только статической) электромагнитного поля источника помехи; наводимая ЭДС является интегральной характеристикой системы, состоящей из источника, рецептора помехи и канала паразитной связи. Для количественной оценки помехи пространственная дискретизация такой системы не нужна.
При расчете поля источника помех в качестве физической модели исследуемого устройства принимается слоистая диэлектрическая среда (непроводящая, изотропная и гомогенная)* с плоскопараллельными границами раздела слоев, неограниченная в азимутальном направлении, в которой расположены проводники; объемы проводников аппроксимируются параллелепипедами.
Учитывая прикладной и конкретный характер указанной задачи, описанной в работе [2], подход к реализации метода ЭПР целесообразно модифицировать. Для слоистой среды функ-
ция Грина Gв , которая является решением волнового уравнения, описывается выражением
того же вида, что и для однородной:
Gв = M exp ( −i kэпр R) R ,

где M — коэффициент; kэпр = ω ε0 εэµ 0 µэ — ЭПР; R — расстояние между элементарным

источником поля и точкой наблюдения; ε0 = 10− 9/ (36 π) и µ 0 = 4π ⋅10−7 — абсолютные ди-

электрическая и магнитная проницаемости свободного пространства; εэ и µэ — эквивалентные относительные диэлектрическая и магнитная проницаемости слоистой среды соответст-

венно; π = 3,14159... ; ω — угловая частота.

Однако в настоящей работе значения εэ и µэ предлагается рассчитывать иначе, по единым для каждого слоя среды более простым формулам, отличным от предлагаемых в [2]:

∫ ∫εэ

=

1 R

∞∞ J0 (λ r) qε(λ) dλ ; µэ = R J0 (λ r) qµ(λ) dλ ,
00

где qε(λ) — полученная при решении электростатической задачи математическая модель

слоистой среды, соответствующей конструкции электронного модуля [3]; qµ(λ) — то же для

магнитостатической задачи; J0 — функция Бесселя первого рода нулевого порядка; r — длина парциального канала связи (расстояние в азимутальной плоскости между элементарным

источником поля и точкой, в которой поле вычисляется); несобственные интегралы вычисляются по методике [4].

Таким образом определенные величины εэ , µэ и kэпр не зависят от размеров проводни-

ка, что существенно снижает объем необходимых вычислений. Тем не менее значения εэ , µэ и

*Влияние препрега, который обеспечивает адгезию металлического проводника к диэлектрику платы, может являться предметом отдельного исследования.

ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2012. Т. 55, № 12

28 И. А. Конников

kэпр зависят от величины r и параметров конструкции. Характер этих зависимостей должен

учитываться при разработке технологии вычисления перекрестной помехи. Идея описания электромагнитного процесса динамической математической моделью,
один из параметров которой рассчитывается в квазистационарном приближении, не нова. Этот прием был использован, например, для описания электромагнитных процессов в линиях с распределенными параметрами при помощи дифференциального уравнения второго порядка (уравнения Гельмгольца [5]), описывающего распространение монохроматической волны вдоль проводника, т.е. распространение волны в канале связи, включающем проводник. Решение этого уравнения, как известно [5], представляет собой сумму двух слагаемых с экспоненциальной зависимостью от расстояния. Показатели экспонент отличаются знаком и рассчитываются через распределенные индуктивность и емкость линии, определяемые на основе решения уравнений Лапласа для потенциалов магнитного и электрического полей, т.е. строго говоря, на постоянном токе. Тем не менее полученная математическая модель эффективно используется в очень широком диапазоне частот. На основе этой модели была построена теория линий с распределенными параметрами, область корректного использования которой весьма обширна. Корректность применения такого приема для описания сходных электромагнитных процессов в канале связи, проводник не включающем, была исследована и обсуждалась в работах [6, 7].
Напряжение помехи, наводимое в проводнике-рецепторе, рассчитывается как интеграл от напряженности помехонесущего электрического поля по длине рецептора. Если проводники параллельны оси абсцисс (абсциссами начала и конца проводника — источника поля помехи длиной l — являются xи и xи+ l; xп и xп+ l п — то же для рецептора помехи длиной l п ), то напряжение помехи

xп + lп

xп + lп

eп = ∫ E ( x,y,z) dl = ϕ ( xп , y) − ϕ ( xп + lп , y) − iω ∫ A( x, y) dx .

xп xп

В этой формуле напряженность электрического поля

E(x,

y,

z)

=



∂A ∂t



grad

ϕ

=

iωA



grad

ϕ

,

где усредненный по толщине проводника векторный потенциал магнитного поля, создаваемого током плотностью j в проводнике-источнике шириной b,

∫A(

x,

y

)

=

µ 0 I1 4π

xи + l xи

µ э (r ) exp ⎣⎡−i kэ (r ) R − γ
R

x0 − xи

⎤⎦ dx0 ;

усредненный по толщине проводника потенциал электрического поля, создаваемого зарядом

плотностью η,

∫ ∫ ∫ ∫ϕ

( x,

y)

=

1 4 π ε0

t

t 0

t
dz
0

b
dz0
0

xи + l
dy0


η( x,

x0 ,

y0 , z0 )

exp ( − ikэпр εэ R

r)

d x0

.

Характер распределения тока и заряда в линии (проводнике-источнике) подробно рас-

смотрен в работе [8]. Интегрирование проводится численно, по известным квадратурным

формулам Гаусса или Лобатто [9].

Заключение. Получаемые с помощью предлагаемого варианта метода ЭПР математиче-

ские модели уступают моделям, основанным на строгом динамическом подходе и пространст-

венной дискретизации, по широкополосности, значительно превосходя их по экономичности

(расходу машинного времени и емкости оперативной памяти). С другой стороны, они значи-

тельно превосходят модели, использующие взаимные емкости и индуктивности, как по эконо-

мичности, так и по широкополосности, позволяя учесть все составляющие поля, а не только

ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2012. Т. 55, № 12

Расчет перекрестных помех в электронных модулях

29

статическую, и таким образом более адекватно описывают физические процессы в реальном электронном модуле.

СПИСОК ЛИТЕРАТУРЫ

1. Конников И. А. Принципы организации подсистемы учета конструктивно-технологических факторов при автоматизированном проектировании микросборок // Вопросы радиоэлектроники. Сер. ТПО. 1982. Bып. 3. С. 8—12.

2. Конников И. А. Вычисление параметров переходного процесса в канале электромагнитной связи // Электромагнитные волны и электронные системы. 2007. № 11. C. 52 —60.

3. Конников И. А. Математическая модель конструкции микросхемы // Математическое моделирование. 2007. № 4. С. 37—44.

4. Конников И. А. Оценка точности вычисления функции Грина в слоистой среде // Вычислительные технологии. 2006. № 5. C. 55—62.

5. Баскаков С. И. Радиотехнические цепи с распределенными параметрами. М.: Высш. школа, 1980. 152 с.

6. Конников И. А. Область корректного применения метода эквивалентной постоянной распространения // 63-я науч.-техн. конф., посвященная Дню радио. СПб: СПб ГТУ „ЛЭТИ“, 2008. С. 28—30.

7. Конников И. А. Область корректного использования метода эквивалентной постоянной распространения // Научная сессия ГУАП. Сб. докл. Ч.II. Технические науки. СПб: ГУАП, 2008. С. 111—115.

8. Конников И. А. Влияние плотности распределения заряда на емкость прямоугольной пленки в слоистой среде // Электричество. 2007. № 3. С. 37—41.

9. Крылов В. И., Шульгина Л. Т. Справочная книга по численному интегрированию. М.: Наука, 1966. 372 с.

Игорь Аркадьевич Конников

Сведения об авторе — д-р техн. наук; Санкт-Петербург; E-mail: konnikov_i@mail.ru

Рекомендована кафедрой проектирования и безопасности компьютерных систем НИУ ИТМО

Поступила в редакцию 15.05.12 г.

ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2012. Т. 55, № 12