STUDY OF REFLECTION COEFFICIENT DISTRIBUTION FOR ANTI-REFLECTION COATINGS ON SMALL-RADIUS OPTICAL PARTS
Annotation
The paper deals with findings for the energy reflection coefficient distribution of anti- reflection coating along the surface of optical elements with a very small radius (2-12 mm). The factors influencing the magnitude of the surface area of the optical element, in which the energy reflection coefficient is constant, were detected. The main principles for theoretical models that describe the spectral characteristics of the multilayer interference coatings were used to achieve these objectives. The relative size of the enlightenment area is defined as the ratio of the radius for the optical element surface, where the reflection is less than a certain value, to its radius (ρ/r). The result of research is the following: this size is constant for a different value of the curvature radius for the optical element made of the same material. Its value is determined by the refractive index of material (nm), from which the optical element was made, and the design of antireflection coatings. For single-layer coatings this value is ρ/r = 0.5 when nm = 1.51; and ρ/r = 0.73 when nm = 1.75; for two-layer coatings ρ/r = 0.35 when nm = 1.51 and ρ/r = 0.41 when nm = 1.75. It is shown that with increasing of the material refractive index for the substrate size, the area of minimum reflection coefficient is increased. The paper considers a single-layer, two-layer, three-layer and five-layer structures of antireflection coatings. The findings give the possibility to conclude that equal thickness coverings formed on the optical element surface with a small radius make no equal reflection from the entire surface, and distribution of the layer thickness needs to be looked for, providing a uniform radiation reflection at all points of the spherical surface.
Keywords
Постоянный URL
Articles in current issue
- METHODS AND TECHNIQUE FOR THERMOPOWER AND ELECTRICAL CONDUCTIVITY MEASUREMENTS OF THERMOELECTRIC MATERIALS AT HIGH TEMPERATURES
- STUDY OF BIREFRINGENCE INFLUENCE ON IMAGE QUALITY OF PHOTOLITHOGRAPHY SYSTEMS IN VIEW OF PARTIALLY-COHERENT LIGHT SOURCE
- EDGE EFFECT MODELING AND STUDY FOR THREE-CHIP RGB LIGHT-EMITTING DIODES
- NON-INTRUSIVE GAS-PHASE THERMOMETRY FOR INDUSTRIAL OXY-FUEL BURNERS
- A SIGNAL ENHANCED PORTABLE RAMAN PROBE FOR ANESTHETIC GAS MONITORING
- COMPENSATION OF OUTPUT SIGNAL TEMPERATURE DEPENDENCE IN HOMODYNE DEMODULATION TECHNIQUE FOR PHASE FIBER-OPTIC SENSORS
- BEND-INDUCED LOSSES IN A SINGLE-MODE MICROSTRUCTURED FIBER WITH A LARGE CORE
- PROTECTIVE COATINGS OF FIBER BRAGG GRATING FOR MINIMIZING OF MECHANICAL IMPACT ON ITS WAVELENGTH CHARACTERISTICS
- TWO-MOTOR ELEVATION DRIVE OF THE PRECISION TWIN TELESCOPE
- ELECTRON DIFFRACTION STUDY OF GRAPHENE LAYERS STRUCTURE ON CONDUCTIVE AND SEMI-INSULATING 6H-SIC (0001) SUBSTRATES
- SAXSEV 2.1 CROSS-PLATFORM APPLICATION FOR DATA ANALYSIS OF SMALL-ANGLE X-RAY SCATTERING FROM POLYDISPERSE SYSTEMS
- NEW BIOTESTING METHOD WITH THE APPLICATION OF MODERN IMPEDANCE TECHNOLOGIES
- ENERGY CONSUMPTION MONITORING OF SMART GRID BASED ON SEMANTIC STREAM DATA ANALYSIS
- METHODS OF POLYMODAL INFORMATION TRANSMISSION
- FREQUENCY OPTIMIZATION FOR SECURITY MONITORING OF COMPUTER SYSTEMS
- MODEL OF PROVIDING WITH DEVELOPMENT STRATEGY FOR INFORMATION TECHNOLOGIES IN AN ORGANIZATION
- METHODS FOR SOLVING LINEAR PROGRAMMING PROBLEMS WITH ADDITIONAL RESTRICTIONS TO THE PARTICULAR VARIABLES
- INTERVAL ADDITIVE PIECEWISE POLYNOMIAL TIME OPERATION MODEL OF HUMAN-OPERATOR IN A QUASI-FUNCTIONAL ENVIRONMENT
- OBLIQUE SHOCK WAVE REFLECTION FROM THE WALL
- OPTIMIZATION OF THE COVERAGE ZONE FOR A CELLULAR NETWORK BASED ON MATHEMATICAL PROGRAMMING
- INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES
- COMPACT REPRESENTATION OF THE PRIORITY MATRIX WITH HIGH DIMENSIONALITY
- MERIDIONAL COMA OF NEGATIVE ANASTIGMATIC LENSES AT THE FINAL POSITION OF AN OBJECT
- LUMINESCENCE OF CADMIUM SULFIDE QUANTUM DOTS IN FLUOROPHOSPHATE GLASSES