For example,Бобцов

REMOTE SYNTHESIS AND CONTROL INFORMATION TECHNOLOGY OF SYSTEM-DYNAMIC MODELS

Annotation

The general line of research is concerned with development of information technologies and computer simulation tools for management information and analytical support of complex semistructured systems. Regional socio-economic systems are consideredas a representative of this system type. Investigation is carried out within the bounds of development strategy implementation of the Arctic zone of the Russian Federation and national safety until 2020 in the Murmansk region, specifically under engineering of high end information infrastructure for innovation and security control problem-solving of regional development. Research methodology consists of system dynamics modeling method, distributed information system engineering technologies, pattern-based modeling and design techniques. The work deals with development of toolkit for decision-making information support problem-solving in the field of innovation security management of regional economics. For that purpose a system-dynamic models suite of innovation process standard components and information technology for remote formation and control of innovation business simulation models under research have been developed. Designed toolkit provides innovation security index dynamics forecasting and innovation business effectiveness of regional economics. Information technology is implemented within the bounds of thin client architecture and is intended for simulation models design process automation of complex systems. Technology implementation software tools provide pattern-based system-dynamic models distributed formation and simulation control of innovation processes. The technology provides availability and reusability index enhancement of information support facilities in application to innovation process simulation at the expense of distributed access to innovation business simulation modeling tools and model synthesis by the reusable components, simulating standard elements of innovation processes. The distinctive feature of the developed technology is system-dynamic pattern description translation into XML-format. That gives the possibility forautonomous model application (without modeling environment). Proposed working-out results are domain-independent and are usablefor modeling systems engineering for different knowledge domains.

Keywords

Articles in current issue