A NONLOCAL PROBLEM WITH INTEGRAL CONDITIONS FOR HYPERBOLIC EQUATION
Аннотация:
In this article, we consider two initial-boundary value problems with nonlocal conditions. The main goal is to show the method which allows to prove solvability of a nonlocal problem with integral conditions of the first kind. This method is based on equivalence of a nonlocal problem with integral conditions of the first kind and nonlocal problem with integral conditions of the second kind in special form. Existence and uniqueness of generalized solutions to both problems are proved.
Ключевые слова:
Постоянный URL
Статьи в номере
- NONLINEARITY-DEFECT INTERACTION: SYMMETRY BREAKING BIFURCATION IN A NLS WITH A b′ IMPURITY
- ATTRACTIVE OR REPULSIVE CASIMIR EFFECT AND BOUNDARY CONDITION
- LANDAU-ZENER EFFECT FOR A QUASI-2D PERIODIC SANDWICH
- BIFURCATION CONDITION FOR OPTIMAL SETS OF THE AVERAGE DISTANCE FUNCTIONAL
- THRESHOLD EIGENFUNCTIONS AND THRESHOLD RESONANCES OF SOME RELATIVISTIC OPERATORS
- ВЛИЯНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА СТРУКТУРУ СЕГНЕТОЭЛЕКТРИЧЕСКИХ ШЕВРОННЫХ СМЕКТИКОВ С∗
- МОДЕЛИРОВАНИЕ ТЕЧЕНИЙ В НАНОКАНАЛАХ МЕТОДОМ МОЛЕКУЛЯРНОЙ ДИНАМИКИ
- МОДЕЛИРОВАНИЕ ОБРАЗОВАНИЯ НАНОЧАСТИЦ ДИОКСИДА ТИТАНА В ПРОТОЧНОМ ПЛАЗМОХИМИЧЕСКОМ РЕАКТОРЕ
- КРИТЕРИЙ ОЦЕНКИ ЭНЕРГЕТИЧЕСКИХ СВОЙСТВ ПОВЕРХНОСТИ
- ФОРМИРОВАНИЕ НАНОЧАСТИЦ Cr2O3 В ГИДРОТЕРМАЛЬНЫХ УСЛОВИЯХ