Например, Бобцов

ИСПОЛЬЗОВАНИЕ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ НАРУШЕНИЙ ЦЕЛОСТНОСТИ JPEG-ИЗОБРАЖЕНИЙ

Аннотация:

Предмет исследования. Проведено исследование нарушений целостности изображений и существующих методов их определения. Предложен метод, позволяющий определять модифицированное изображение, а также источник его модификации. Метод позволяет определять оригинальное изображение и модель камеры, на которую оно было снято. Метод. В предлагаемом методе использованыинструменты машинного обучения. Исследованы следующие методы машинного обучения: наивный байесовский классификатор, дерево решений, логистическая регрессия, k-ближайших соседей, SVC, randomforest. База для обучения модели была образована оригинальными изображениями с веб-сайта www.steves-digicams.com, модифицированными с помощью различных графических редакторов. Предложенный метод использует структуру JPEG-изображения в байтовом представлении, а именно маркеры. В качестве признаков для классификации выступали наличие маркеров и их количество. Основные результаты. Обученная модель показала высокий результат классификации – более 95%. Среди исследованных алгоритмов два показали наилучшие результаты – дерево решений и randomforest, по критерию стабильности было выбрано дерево решений. Практическая значимость. Полученный результат может быть применен на практике в таких областях, как криминалистика и информационная безопасность.

Ключевые слова:

Статьи в номере